
Intuitionistic Ancestral Logic

Liron Cohen∗

Tel Aviv University, Israel

Robert L. Constable†

Cornell University, Ithaca, NY, USA

Abstract

In this paper we define pure intuitionistic Ancestral Logic (iAL), ex-
tending pure intuitionistic First-Order Logic (iFOL). This logic is a
dependently typed abstract programming language with computational
functionality beyond iFOL given by its realizer for the transitive clo-
sure, TC. We derive this operator from the natural type theoretic def-
inition of TC using intersection. We show that provable formulas in
iAL are uniformly realizable, thus iAL is sound with respect to con-
structive type theory. We further show that iAL subsumes Kleene
Algebras with tests and thus serves as a natural programming logic for
proving properties of program schemes. We also extract schemes from
proofs that iAL specifications are solvable.

1 Introduction

Type theories implemented by proof assistants have become highly effec-
tive as specification languages for a wide range of computational tasks, from
operating systems and compiler verification [26, 9] to the synthesis of correct-
by-construction distributed protocols [36]. These type theories are rich logi-
cal systems which are difficult to grasp all at once. It is therefore interesting
to see how they can be built from the ground up, starting with first-order
logic as is the practice for set theory. This turns out to be quite challenging
in the case of the constructive type theories. It was not known until quite
recently whether intuitionistic first-order logic is complete with respect to
its intended semantics [13]. In this article, we take another step toward an
explanation of constructive type theory that is closer to the pattern known
for set theory and other foundational theories of mathematics such as Peano
Arithmetic (PA).

Pure First-Order Logic (FOL) is one of the most widely studied and
taught systems of logic. There are many excellent textbooks that present

∗liron.cohen@math.tau.ac.il
†rc@cs.cornell.edu

1

it. 1 It is the base logic in which two of the most studied mathematical the-
ories, Peano Arithmetic (PA) and Zermelo/Fraenkel set theory with choice
(ZFC), are presented. The intuitionistic versions of these systems, iFOL,
Heyting Arithmetic (HA), Intuitionistic ZF (IZF) [15] and the related
CZF [2], are also well studied. These intuitionistic logics are important in
constructive mathematics, linguistics, philosophy and especially in computer
science. Computer scientists exploit the fact that intuitionistic theories can
serve as programming languages [6, 30] and that iFOL can be read as an
abstract programming language with dependent types.

In the famous paper with the telling name “On the Unusual Effectiveness
of Logic in Computer Science” [18], it is forcefully noted that “at present
concepts and methods of logic occupy a central place in computer science,
insomuch that logic has been called ’the calculus of computer science’ [29]”.
To demonstrate this claim, this paper then studies an impressive (yet ex-
plicitly non-exhaustive) list of applications of logics in different areas of
computer science: descriptive complexity; database query languages; appli-
cations of constructive type theories; reasoning about knowledge; program
verification and model checking. But what logic has such effectiveness? A
simple check of the above list of applications from [18] reveals that first-
order logic is sufficient for none of them. All these examples indicate that
the crucial shortcoming of first-order logic is its inability to provide induc-
tive definitions in general, and the notion of the transitive closure of a given
binary relation in particular.

Since we are interested in natural extensions of iFOL that clearly reveal
the duality between logic and programming, and can capture general logical
principles that have applicable computational content, it seems natural to
investigate an intuitionistic version of Ancestral Logic (AL), which is a well
known extension of FOL (e.g., [4, 10, 27]) appropriate for defining the tran-
sitive closure of binary relations2. In this paper we develop an intuitionistic
version of AL, iAL, as a refinement of AL and an extension of iFOL, capable
of giving computational explanations of the same commonly occurring fun-
damental notions. We believe that rather than iFOL, iAL should be taken
as the basic logic which underlies most applications of logic to Computer
Science. Many proofs in iAL turn out to have interesting computational
content that exceeds that of iFOL in ways of interest to computer scien-
tists. We prove that iAL is sound with respect to constructive type theory
by showing that provable formulas are uniformly realizable. Furthermore,
we show that iAL subsumes Kleene Algebras with tests [23] and thus serves
as a natural programming logic for proving properties of program schemes.
We also extract schemes from proofs that iAL specifications are solvable.

1We use the term pure to indicate that equality, constants, and functions are not
built-in primitives.

2Ancestral Logic is also sometimes called Transitive Closure Logic in the literature.

2

We adopt the presentation of iFOL from Intuitionistic Completeness
of First-Order Logic [13] where the computational content is made explicit
using evidence semantics based on the propositions-as-types principle [31]
aka the Curry Howard isomorphism [37]. A formal semantics of the logic
we present could be based on extensional constructive type theories such as
Intuitionistic Type Theory (ITT) [31] or Constructive Type Theory (CTT)
[12, 3, 8]. However, the precise details of the semantical metatheory are not
that critical to our results, so we remain informal. For other notions of
truth and validity, one can refer to the accounts given in [38].

2 The System iFOL

2.1 Realizability Semantics for iFOL

This section reviews the semantics of evidence for pure iFOL along the
lines of [13]. This is just a compact type theoretic restatement of the
propositions-as-types realizability semantics given in [31, 30, 12]. This se-
mantics plays an important role in building correct-by-construction software
and in the semantics of strong constructive typed systems, such as Compu-
tational Type Theory (CTT) [3], Intuitionistic Type Theory (ITT) [31],
Intensional-ITT [8, 35], the Calculus of Inductive Constructions (CIC) [7],
and Logical Frameworks such as Edinburgh LF [19].3 The basic idea be-
hind the semantics is that constructive proofs provide evidence terms (also
called realizers) for the propositions they prove, and these realizers allow to
directly extract programs from the proofs.

Let L be a first-order signature of predicates Pni
i (with arity ni) over a

domain D of individuals of a model M for L. The domain of discourse, D,
can be any constructive type, [D]M.4 Every formula A over L is assigned
a type of objects denoted [A]M, called the evidence for A with respect to
M. We normally leave off the subscript M when there is only one model
involved. Below is how evidence is defined for the various kinds of first-order
propositional functions. The definition will also implicitly provide a syntax
of first-order formulas.

Definition 1. (First-order formulas and their evidence)

• atomic propositional functions Pni
i are interpreted as functions

from Dni into P the type of propositions, and for the atomic propo-

3All of these logics have been implemented by proof assistants such as Agda, Coq,
Nuprl, and Twelf.

4As a first approximation readers can think of types as constructive sets [5]. Peter
Aczel [1] shows how to interpret constructive sets as types in ITT [30], and this approach
was implemented in MetaPRL for CTT by Hickey [20]. Intuitionists might refer to species
instead. We do not analyze the structure of the domain further and do not examine the
equality relation on the type when dealing with the pure first-order theory, as is standard
practice.

3

sition Pni
i (a1, ..., ani), the basic evidence must be supplied, say by

objects pi. In the uniform treatment, we consider all of these objects
to be equal, and we denote them by the unstructured atomic element
?.5 Thus if an atomic proposition is known by atomic evidence, the
evidence is the single element ? of the unit type, {?}.6

• conjunction [A ∧B] = [A]× [B], the Cartesian product.

• existential [∃x.B(x)] = x : [D]M × [B(x)], the dependent product.

• implication [A⇒ B] = [A]→ [B], the function space.7

• universal [∀x.B(x)] = x : [D]M → [B(x)], the dependent function
space.

• disjunction [A ∨B] = [A] + [B], disjoint union.

• false [False] = ∅ the void type.

Negation is defined by ¬A := A⇒ False.
It is easy to prove classically that a formula A is satisfied in a model

M if and only if there is evidence in [A]M [13]. This shows that we can
read this evidence semantics classically, and it will correspond to Tarski’s
semantics for FOL and AL.

2.2 Proof System for iFOL over Domain D

We next present the proof system iFOL adopting the presentation style
from [13] where the computational content is made explicit using evidence
semantics based on the propositions-as-types principle [31] aka the Curry
Howard isomorphism [37]. The rules of the system are presented in the “top
down style” (also called refinement style) in which the goal comes first and
the rule name with parameters generates subgoals. Thus the sequent style
trees are grown with the root at the top. This top down, goal oriented style
is common to all of the proof assistants which work in the highly successful
tactic mechanism of the Edinburgh LCF proof assistant [16], and it is also
compatible with the style for rules and proofs used in the Nuprl book [12].
Now there are many thousands of formal proofs done in that style, probably
more than in any other style. It is impossible in practice to create proofs

5Officially this can be done using the set type {sq(pi)|Pni
i (a1, ..., ani)}, where sq(pi)

“squashes” the evidence pi to ? [11].
6It might seem that we should introduce atomic evidence terms that might depend on

parameters, say p(x, y) as the atomic evidence in the atomic proposition P (x, y) but this
is unnecessary and uniformity would eliminate any significance to those terms. In CTT
and ITT , the evidence for atomic propositions such as equality and ordering is simply an
unstructured term such as ?.

7This function space is interpreted type theoretically and is assumed to consist of
effectively computable deterministic functions.

4

that are bottom up, so the rules should match the proof requirements. This
style is also compatible with the standard writing style in which a theorem
is stated first followed by its proof.

We present the rules in the style of McCarthy’s abstract syntax [32]. For
each rule we provide a name that is the outer operator of a proof expression
with slots to be filled in as the proof is developed. Each sequent in the
rules is build so that the left hand side contains the context, and the right
hand side contains a type and its evidence term. For the right hand sides
we use the notation “type by term” (as opposed to “term : type”). The
construction rules (often called introduction rules) apply to terms on the
right hand side of the sequent and introduce the canonical proof terms.
For each of these construction rules, the constructor needs subterms which
build the component pieces of evidence. For each connective and quantifier
we also have rules for their occurrence on the left of the sequent. These are
the rules for decomposing a connective or quantifier. They tell us how to
use the evidence that was built with the corresponding construction rules,
and the formula being decomposed is always named by a label in the list of
hypotheses, so there is a variable associated with each rule application. For
a more detailed explanation of the syntax used in the proof rules see [13].

Definition 2. The proof system iFOL is given in Fig. 1.

Note that we use the term d to denote objects in the domain of discourse
D. In the classical evidence semantics, we assume that D is non-empty by
postulating the existence of some d0.

2.3 Constructive/Intuitionistic Metatheory

Formal semantics of the intuitionistic logics we present are based on exten-
sional constructive type theories such as Intuitionistic Type Theory (ITT)
[31, 30, 35] or Constructive Type Theory (CTT) [12, 3]. The precise de-
tails of the semantical metatheory are not that critical to our results, so
we remain informal. Critical to constructive type theory and to all of our
results is the underlying computation system, so we need to mention its key
properties. This is essentially the untyped programming language underly-
ing the type theory and thus underlying iFOL and iAL (that is defined in
the sequel).

The data and the programs of the computation system are given by
closed terms. To say what we mean by a closed term we need to examine
the structure of terms further. The precise definition of terms provides the
syntax of the programming language.

8This notation shows that ap(f ; sla) is substituted for v in g(v). In the CTT
logic we stipulate in the rule that v = ap(f ; sla) in B.

9In the CTT logic, we use equality to stipulate that v = ap(f ; d) in B(v) just before
the hypothesis v : B(d).

5

Figure 1: The proof system iFOL

And Construction Or Construction
H ` A ∧B by pair(slota; slotb) H ` A ∨B by inl(slotl)

H ` A by slota H ` A by slotl
H ` B by slotb

H ` A ∨B by inr(slotr)

Implication Construction H ` B by slotr
H ` A⇒ B by λ(x.slotb(x)) new x
H,x : A,H ′ ` B by slotb(x) Exists Construction

H ` ∃x.B(x) by pair(d; slotb(d))

Hypothesis H ` d ∈ D by obj(d)

H, d : D,H ′ ` d ∈ D by obj(d) H ` B(d) by slotb(d)

H,x : A,H ′ ` A by hyp(x) All Construction
H ` ∀x.B(x) by λ(x.slotb(x))

H,x : D,H ′ ` B(x) by slotb(x)

And Decomposition
H,x : A ∧B,H ′ ` G by spread(x; l, r.slotg(l, r)) new l, r
H, l : A, r : B,H ′ ` G by slotg(l, r)

Implication Decomposition
H, f : A⇒ B,H ′ ` Gby apseq (f ; slotg; v.slg [ap(f ;slota)/v]) new v8

H ` A by slota
H, v : B,H ′ ` G by slotg(v)

Or Decomposition
H, y : A ∨B,H ′ ` G by decide(y; l.slotleft(l); r.slotright(r))

H, l : A,H ′ ` G by slotleft(l)

H, r : B,H ′ ` G by slotright(r)

Exists Decomposition
H,x : ∃y.B(y), H ′ ` G by spread(x; d, r.slotg(d, r)) new d, r

H, d : D, r : B(d), H ′ ` G by slotg(d, r)

All Decomposition
H, f : ∀x.B(x), H ′ ` G by apseq(f ; d; v.slotg [ap(f ;d)/v])

H ` d ∈ D by obj(d)

H, v : B(d), H ′ ` G by slotg(v)9

False Decomposition
H, f : False,H ′ ` G by any(f)

6

We opt for a very simple syntax. All terms have an outer operator
which determines whether a term is canonical or non-canonical. Below are
the operators that we will use: the canonical ones, and the corresponding
non-canonical ones associated with the canonical. For instance, we use the
term pair(a; b) (or more succinctly < a, b >) for And construction rule, and
for the corresponding decomposition rule we use spread(x; l, r.t(l, r)) where
the binding variables l, r have a scope that is the subterm t(l, r). The reason
to use spread instead of the more familiar operators for decomposing a pair
p such as first(p) and second(p) (or p.1 and p.2) is that we need to indicate
how the subformulas of a conjunction will be named in the hypothesis list.10

The canonical terms correspond to the values of the computation system,
the data. The non-canonical expressions evaluate to canonical ones under
the evaluation rules. They correspond in a sense to programs applied to
data. This terminology is used by Martin-Löf in relating his type theory to
programming languages [30].

Canonical Non-canonical
pair spread
inl, inr decide
λ ap, apseq
[] (list constructor) concat
?

Terms having a canonical operator are called values and those with non-
canonical operators are operations. In building terms we use bound vari-
ables, e.g. the notation for functions has the form λ(x.t(x)) where the
subterm x is a bound variable with binding operator λ. If the subterm t(x)
has an occurrence of the letter x , the expression t(x) is neither an operator
nor a value, it s an open term. Open terms have a special status in the
computation system because computation proceeds by substituting terms
for variables within open terms. Typically we think of substituting values
for variables, but there are reasons that we must also consider substituting
variables for variables.

Computation is defined as a sequence of rewritings or reductions of terms
to other terms according to very explicit rules. Each rule form of the proof
systems iFOL and iAL when all its slots are filled in becomes a term in an
applied lambda calculus, and there are computation rules that define how to
reduce these terms. These rules are given in detail in several papers about
Computational Type Theory and Intuitionistic Type Theory, e.g. [12, 30].
The computation systems of iFOL and iAL have the property that all
reductions will terminate in values which are said to be the value of the
expression. Canonical terms, such as λ(x.x) reduce to themselves. A non-
canonical term such as ap(λ(x.x); y) reduces in one step to y.

It is important to notice that all of the programs and data of these logics

10See [13] for a more detailed description of the operators.

7

are untyped. We also say that they are polymorphically typed because we
will see that many terms, such as λ(x.x) will have the type A⇒ A for any
proposition A of the logic.

3 The System iAL

Ancestral Logic (AL) is a well known extension of FOL, obtained by adding
to it a transitive closure operator (see, e.g., [4, 10, 27]). Its expressive power
exceeds that of FOL, since in AL one can give a categorical characteriza-
tion of concepts such as the natural numbers and the concept of finiteness,
which are not expressible in FOL (hence AL is not compact). In [4] it
was argued that AL provides a suitable framework for the formalization of
mathematics as it is appropriate for defining fundamental abstract formula-
tions of transitive relations that occur commonly in basic mathematics. AL
is also fundamental in computer science as reasoning effectively about pro-
grams clearly requires having some version of a transitive closure operator
so that one can describe such notions as the set of nodes reachable from a
program’s variables. Since we are interested in extensions of intuitionistic
first-order logic that clearly show the duality between logic and program-
ming and which can capture general logical principles that have applicable
computational content, it seemed natural to develop an intuitionistic version
of AL – iAL, as a refinement of AL and an extension of iFOL.

3.1 The Transitive Closure Operator

A standard mathematical definition of the transitive closure of a binary
relation R, denoted by R+, is as follows. Let N be the set of natural numbers.
For n ∈ N define: R(0) = R, R(n+1) = R(n) ◦ R, where the composition of
relations R and S is defined by (S ◦R) (x, y) iff ∃z (S (x, z) ∧R (z, y)).

Definition 3. The transitive closure R+ of binary relation R is defined by

R+(x, y) = ∃n : N.R(n)(x, y)

At appropriate places we use the notation xRy instead of R(x, y).
Note that we are using an intuitionistic semantics in our metatheory, so,

for instance, the definition of composition means that we can effectively find
the value z. Moreover, the constructive nature of the definition entails that
xR+y implies we know a natural number witness for the number of iterations
of the relation R. Hence we can prove in the semantics that given elements
x and y in D, xR+y iff we can effectively find a finite list of elements x1, ...xn
from D, such that xRx1 ∧ x1Rx2 ∧ ... ∧ xnRy.

While this definition is perfectly acceptable, it depends essentially on
the type of natural numbers, N, with its attendant notion of equality and
induction. Thus, it requires invoking a version of intuitionistic ω-logic (e.g.

8

[33]) as an underlying logic. In search of simplicity we wish to avoid this
constraint, thus our axiomatic definition will be in terms of finite lists with-
out mentioning the natural numbers explicitly. This will allow us to frame
iAL in a more generic and polymorphic way, without explicit mention of N.

Observe the following (equivalent) definition for the transitive closure.

Proposition 4. R+ is the minimal transitive relation L such that R ⊆ L,
i.e.

R+ =
⋂

R⊆L&Transitive(L)

L

where a relation R is said to be transitive if ∀x, y, z.(xRy ∧ yRz)⇒ xRz.

This definition uses the intersection type of Constructive Type Theory
(CTT) used in [3], the type

⋂
x:AB(x). Its elements are those that belong to

all of the types B(x). It generalizes the binary intersection A∩B, consisting
of the elements that belong to both types A and B. For instance {x :
N|Even(x)} ∩ {x : N|Prime(x)} is the unit type {2}.

We shall use this definition to form our axiomatic system. This is a key
step toward a polymorphic account of iAL which will support our claim that
a type theoretic semantics can be not only elementary, but even uniform.

3.2 Realizability Semantics for iAL

Instead of defining evidence for transitive closure using N, we use more
generic and polymorphic constructs to give evidence for the transitive clo-
sure, in the spirit of using polymorphic functions, pairs, and tags. To know
R+(x, y) for elements x and y in D, we construct a list of elements of D,
say [d, ..., d′], and a list of evidence terms [r, ..., r′] such that r is evidence
for R(x, d) and r′ is evidence for R(d′, y) and the intermediate terms form
an evidence chain. That is, if d+ is the list of elements and r+ is the list of
evidence terms, we have that the first element of d+ is d1 and first of r+ is
r1 where r1 ∈ [R(x, d1)], the next element of d+ is d2 and the next element
of r+ is r2, evidence for R(d1, d2), and so forth. These relationships hold
because of the way the evidence is built up, so we do not need the numerical
indices to define the relationship, only to describe it intuitively. It is crucial
to notice that the concept of lists is subsumed into the realizers and does
not appear in the logic itself.11

Notice that any well-formed formula (wff) together with a pair of distinct
variables may be viewed as defining a binary relation. The notation Ax,y

will be used to specify that we treat the formula A as defining a binary
relation with respect to variables x and y (x and y distinct variables), and
other free variables that may occur in A are taken as parameters. Thus, one

11It should be noted that using lists instead of the naturals to form the transitive closure
operator is a common method, already used in other logical frameworks, e.g., Isabelle [34].

9

may apply the transitive closure operator not only to atomic predicates, but
to any wff. We write Ax,y (u, v) for the formula obtained by substituting u
for x and v for y in A. For simplicity of presentation, in what follows the
subscript x, y is omitted where there is no chance of confusion.

Definition 5. (iAL formulas and their evidence)
iAL formulas are defined as iFOL formulas with the addition of the following
clauses:

• If A is a formula, x, y distinct variables, and u, v variables, then
A+

x,y (u, v) is a formula.

• The evidence type for A+
x,y (u, v) consists of lists of the form

[〈d0, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, dn+1, rn+1〉]

where n ≥ 0, d0 = u, dn+1 = v, d0, d1, ..., dn+1 : [D]M, and
ri ∈ [Ax,y(di−1, di)] for 1 ≤ i ≤ n+ 1.

Notice that the realizers for transitive closure formulas are all polymor-
phic and thus independent of realizers for particular atomic formulas.

Recall that according to Def. 3, R+ (x, y) iff ∃n
(
N (n) ∧R(n) (x, y)

)
.

This is not a legal formula in our language, but this is intuitively what we
mean, if we had the natural numbers at our disposal. The realizer for this
“formula” will be of the form: 〈n, 〈isnat (n) , 〈x, d1, ..., dn, y, 〈r1, ..., rn+1〉〉〉〉
where isnat (n) realizes N (n). The realizer of the transitive closure cor-
relates nicely to this realizer. A realizer for the formula R+ (x, y) of the
form 〈n, 〈isnat (n) , 〈x, d1, ..., dn, y, 〈r1, ..., rn+1〉〉〉〉 can be easily converted
into the form [〈x, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, y, rn+1〉] simply by rearranging
the data. For the converse, the data can also be rearranged, but some addi-
tional data is required: n – which is the length of the list minus 1; and the
realizer for it being a natural number – which is available as the length of a
list is always a natural number.12

The underlying computation system is essentially the untyped program-
ming language underlying the type theory and thus underlying iAL. The
computation systems of iAL has the property that all reductions will termi-
nate in values which are said to be the value of the expression. Moreover,
all of the programs and data of iAL are untyped. We also say that they
are polymorphically typed because many terms, such as λ(x.x) will have the
type A⇒ A for any proposition A of the logic.

12It is interesting to notice that by interpreting the naturals as lists on the unit type,
the definition of the transitive closure operator by means of the natural numbers is an
instance of our definition using lists.

10

3.3 Proof System for iAL over Domain D

We present a proof system for iAL which extends iFOL [13] by adding
construction and decomposition rules for the transitive closure operator.
We here use the standard canonical operator [] for list constructor, and
the non-canonical operator associated with it, concat, for concatenating two
lists.

Definition 6. The proof system iAL is defined by adding to iFOL the
following rules for the transitive closure operator.

• TC Base

H,x : D, y : D,H ′ ` A+(x, y) by [〈x, y, slot〉]
H,x : D, y : D,H ′ ` A(x, y) by slot

• TC Trans

H,x : D, y : D,H ′ ` A+(x, y) by concat (slotl, slotr)
H,x : D, z : D,H ′ ` A+(x, z) by slotl
H, y : D, z : D,H ′ ` A+(z, y) by slotr

• TC Ind

H,x : D, y : D, r+ : A+(x, y), H ′ ` B(x, y) by tcind (r+;u, v, w, b1, b2.tr(u, v, w, b1, b2);
u, v, r.st(u, v, r))

H,u : D, v : D,w : D, b1 : B(u, v), b2 : B(v, w), H ′ ` B(u,w) by tr(u, v, w, b1, b2)
H,u : D, v : D, r : A(u, v), H ′ ` B(u, v) by st(u, v, r)
where u, v, w are fresh variables.

Rule TC Base states that the list consisting of the triple [〈x, y, r〉] where
r realizes A(x, y) is the realizer for the transitive closure A+(x, y). The
crucial point about Rule TC Trans is that it does not nest lists of triples for
the same goal; instead we “flatten the lists out” as proofs are constructed.
This means that proofs of transitive closure have a distinguished realizer.
Furthermore, it provides an adequate mechanism for creating a flat chain of
evidence needed for the transitive closure induction rule. We have found this
to be the minimal, most natural structure needed for handling a TC-chain.

The realizer for Rule TC Ind computes on the list r+ and is recursively
defined as follows:
tcind(r+;u, v, w, b1, b2.tr(u, v, w, b1, b2);u, v, r.st(u, v, r)) computes to:
if base(r+) then st(r+.11, r

+.12, r
+.13)

else

tr(r+.11, r
+.12, r

+.22, tcind (rest(r+);u, v, w, b1, b2.tr(u, v, w, b1, b2);u, v, r.st(u, v, r)).

The operator base(r+) is true when r+ is simply the singleton triple. We
use the notation r+.u to denote the uth element in the list r+, and the

11

subscript r+.ui selects the ith elements of the triple (i ∈ {1, 2, 3}). The
operator rest(r+) returns the list r+ without its first element.

Note that the more commonly used induction rule (see [4, 27]) is deriv-
able in our system.

Proposition 7. The following rule is derivable in iAL:
H,x : D, y : D, r+ : A+(x, y), g : G(x), H ′ ` G(y)
H,u : D, v : D, r : A(u, v), g′ : G(u), H ′ ` G(v)
where u, v are fresh variables.

Proof. Immediately follows from TC Ind by taking A (u, v) to be the formula
G (u)⇒ G (v).

It is easy to verify the following Lemma.

Lemma 8. The following are provable in iAL:

A (x, z) , A+ (z, y) ` A+ (x, y) (1)

A+ (x, z) , A (z, y) ` A+ (x, y) (2)

We next demonstrate that iAL is an adequate system for handling the
transitive closure operator by showing that fundamental, intuitionistically
valid statements concerning the TC operator are provable in iAL. Given a
signature with a binary relation R, intuitively we may think of its interpre-
tation as a directed graph whose vertices are the elements of the domain and
two vertices are adjoined by an edge iff their interpretations are in the inter-
pretation of the relation R. The transitive closure of R is then interpreted
by the existence of a path between two vertices.

Observe the following basic statement: “if there is a path between x and
y in a graph G, then either x and y are neighbors, or there is a neighbor z
of x, such that from z there is a path to y”. This statement is classically
valid, and though at first sight one may doubt that it is intuitionistically
valid (as it contains a disjunction), it is provable in iAL.

Proposition 9. The following are provable in iAL:

A+ (x, y) ` A (x, y) ∨ ∃z
(
A (x, z) ∧A+ (z, y)

)
(3)

A+ (x, y) ` A (x, y) ∨ ∃z
(
A+ (x, z) ∧A (z, y)

)
(4)

Proof. Denote by ϕ (x, y) the formula ∃z (A (x, z) ∧A+ (z, y)). For (3) apply
TC Ind on the following two subgoals:

Goal 1: A (u, v) ` A (u, v) ∨ ϕ (u, v)

Goal 2: A (u, v) ∨ ϕ (u, v) , A (v, w) ∨ ϕ (v, w) ` A (u,w) ∨ ϕ (u,w)

12

Goal 1 is clearly provable in iFOL. For Goal 2 it suffices to prove the fol-
lowing four subgoals, from which Goal 2 is derivable using Or Decomposition
and Or Composition:

A (u, v) , A (v, w) ` ϕ (u,w) , A (u, v) , ϕ (v, w) ` ϕ (u,w)

ϕ (u, v) , A (v, w) ` ϕ (u,w) , ϕ (u, v) , ϕ (v, w) ` ϕ (u,w)

We prove ϕ (u, v) , ϕ (v, w) ` ϕ (u,w), the other proofs are similar. It is easy
to prove (using Lemma 8) that ∃z (A (v, z) ∧A+ (z, w)) ` A+ (v, w). By TC
Trans we can deduce d : D,A (u, d) , A+ (d, v) , A+ (v, w) ` A+ (d,w), from
which ∃z (A (u, z) ∧A+ (z, w)) is easily derivable.

The proof of (4) is similar.

Another basic statement in graph theory is: “if there is a path between
x and y in a graph G, then x and y are not isolated”. Again, while it may
seem to be intuitionistically invalid because of the existential nature of the
argument, it turns out to be provable in iAL.

Proposition 10. The following are provable in iAL:

A+ (x, y) ` ∃zA (x, z) (5)

A+ (x, y) ` ∃zA (z, y) (6)

Proof. (5) is derivable applying TC Ind on the following two subgoals:

Goal 1: A (x, y) ` ∃zA (x, z), which is easily provable in iFOL.

Goal 2: ∃zA (u, z) ,∃zA (v, z) ` ∃zA (u, z), which is valid due to Hypoth-
esis.

The proof of (6) is symmetric.

The above proposition is based on the more general fact that the exis-
tential quantifier is definable by the transitive closure operator (see [4]).

Proposition 11. The following is provable in iAL:

` ∃xA↔
(
A
{u
x

}
∨A

{v
x

})+
u,v

(u, v)

where u and v are fresh variables.13

13The notation A
{

u
x

}
denotes substituting u for x in A.

13

Proof. Denote by ϕ (u, v) the formula A (u,−→y)∨A (v,−→y). The right-to-left
implication follows from Prop. 10 since ∃z (A (u,−→y) ∨A (z,−→y)) ` ∃xA (x,−→y)
can be easily proven in iFOL, and Prop. 10 entails that ϕ+ (u, v) ` ∃zϕ (u, z).
For the left-to-right implication it suffices to prove d : D,A (d,−→y) ` ϕ+ (u, v).
Clearly, in iFOL, d : D,A (d,−→y) ` ϕ (d, v) is provable, from which we
can deduce by TC Base d : D,A (d,−→y) ` ϕ+ (d, v). Since we also have
d : D,A (d,−→y) ` ϕ (u, d), by Lemma 8 we obtain d : D,A (d,−→y) ` ϕ+ (u, v).

It is important to notice that there is a strong connection between our
choice for the realizer of the transitive closure and the standard realizers
for iFOL. For example, Prop. 11 entails that the existential quantifier is
definable using the transitive closure operator. It is interesting to see how the
realizers for the defining formula correlate to the realizer for ∃xP (x). The
standard realizer for ∃xP (x) is a pair 〈d, ?〉, since P is an atomic relation.
The realizer for the defining formula, (P (u) ∨ P (v))+ (u, v), is of the form
[〈d0, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, dn+1, rn+1〉] where d0 = u, dn+1 = v, and
each ri is a realizer for P (di)∨P (di+1). Now, suppose we have a realizer of
the form 〈d, ?〉 of ∃xP (x). The realizer for the defining formula in iAL will
be [〈u, d, inr (?)〉]. For the converse, suppose we have a realizer of the form
[〈d0, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, dn+1, rn+1〉] where d0 = u, dn+1 = v. Then
we can create a realizer for ∃xP (x) in the following way: if r1 is inl (?)
return 〈u, ?〉, else return 〈d1, ?〉.

Proposition 12. The following is provable in iAL:(
A+
)+

(x, y) ` A+ (x, y)

Proof. Applying TC Ind on A+ (u, v) , A+ (v, w) ` A+ (u,w) (which is deriv-
able using TC Trans) and A+ (x, y) ` A+ (x, y) (which is clearly provable)
results in the desired proof.

3.4 Soundness for iAL

We next prove that iAL is sound by showing that every provable formula is
realizable, and even uniformly realizable. We do this by giving a semantics
to sequents and then proceed by induction on the structure of the proofs. It
is important to note that the realizers are all polymorphic, they do not con-
tain any propositions or types as subcomponents and thus serve to provide
evidence for any formulas built from any atomic propositions.

Given a type D (empty or not) as the domain of discourse, and given
atomic propositional functions from D to propositions, P, for the atomic
propositions, and given the type theoretic meaning of the logical opera-
tors and the transitive closure operator, we can interpret an iAL sequent
over dependent types by saying that a sequent x1 : T1, x2 : T2(x1), ..., xn :

14

Tn(x1, ..., xn−1) ` G(x1, ..., xn) defines an effectively computable function
from an n-tuple of elements of the dependent product of the types in the
hypothesis list to the type of the goal, G(x1, ..., xn).

Theorem 13. (Realizability Theorem for iAL) Every provable formula
of iAL is realizable in every model.

Proof. The proof is carried out by induction on the structure of proofs in
iAL. The proof rules for iAL show how to construct a realizer for the goal se-
quent given realizers for the subgoals. Also, the atomic (axiomatic) subgoals
are of the form x1 : T1, x2 : T2(x1), ..., xn : Tn(x1, ..., xn−1) ` Tj(x1, ..., xn),
which are clearly realizable.

Since propositions-as-types realizability is the definition of constructive
truth, this theorem allows us to also say that every provable formula is true
in every constructive model.

Theorem 14. (Soundness Theorem for iAL) Every provable formula
of iAL is intuitionistically valid.

Corollary 15. (Consistency Theorem for iAL) iAL is consistent, i.e.
False is unprovable in iAL.

4 Programming in iAL

4.1 Kleene Algebra

Kleene algebra (KA) [22] arises in many areas of computer science, such as
automata theory, the design and analysis of algorithms, dynamic logic, and
program semantics. There are many interesting models of KA, yet the the-
ory of relational Kleene algebra (RKA) is of practical interest, particularly
for programming language semantics and verification [24, 23].

Definition 16. A Kleene algebra (KA) is a structure (K,+, ·,∗ , 0, 1), such
that (K,+, ·, 0, 1) forms an idempotent semiring which satisfies the following
axioms:

(1) 1 + xx∗ ≤ x∗ (2) 1 + x∗x ≤ x∗

(3) xp ≤ x→ xp∗ ≤ x (4) px ≤ x→ p∗x ≤ x

We omit ·, writing xy for x·y. Elements of K, denoted by p, q, r, x, ..., are
called programs. The upper semilattice structure induces a natural partial
order on any idempotent semiring: x ≤ y ⇔ x+ y = y.

Definition 17. For an arbitrary set U , the set P (U×U) of all binary rela-
tions on U forms a Kleene algebra R(U) with the interpretations ∪ for +,
composition ◦ for ·, empty relation for 0, identity relation for 1 and reflex-
ive transitive closure for ∗. A Kleene algebra is relational (RKA) if it is a
subalgebra of R(U) for some U .

15

Due to the prominence of relational models in programming language
semantics and verification, it is of high interest to characterize them ax-
iomatically or otherwise. We next show that iAL with equality (iAL=)
forms an adequate proof system for RKA, as RKA can be embedded in
iAL= in such a way that any valid RKA expression is translated into a
provable iAL= formula.

Definition 18. The system iAL=, for languages with equality, is obtained
from iAL by adding the following:

• Reflexivity Axiom
H ` x = x by Eq

• Paramodulation Rule
H,x : D, y : D, r : A,H ′ ` A′ by r
H, x : D, y : D,H ′ ` x = y by slot
where A′ is obtained from A by replacing free occurrences of x in A
with y, with the standard restrictions.

Note that the axioms for symmetry and transitivity of the equality re-
lation are derivable in iAL=. Moreover, it can be proven easily that all of
the atomic relations respect equality.

Let L be a pure first-order signature of binary predicates, P1, P2, ... with
equality. The translation from a RKA expression E into an iAL= for-
mula, denoted by |E|, is defined inductively as follows. We use the notation
Arep(x,y) to denote the formula obtained from A by replacing the free occur-
rences of x in A with y (applying the α-rule if necessary).

• For atomic p assign a distinct predicate Pi and define: |p| := Pi (x, y)

• |0| := False

• |1| := x = y

• |E1 + E2| := |E1| ∨ |E2|

• |E1 · E2| := ∃z
(
|E1|rep(y,z) ∧ |E2|rep(x,z)

)
where z is a fresh variable.

• |E∗| := x = y ∨ |E|+

• |E1 = E2| := (|E1| ⇒ |E2|) ∧ (|E2| ⇒ |E1|)

Note that |p ≤ q| is the formula: ((|p| ∨ |q|)⇒ |q|)∧(|q| ⇒ (|p| ∨ |q|)), which
is provably equivalent to |p| ⇒ |q|. For convenience, in what follows we shall
use this as the translation of p ≤ q.

Theorem 19. For E a valid expression of RKA, |E| is provable in iAL=.

16

Proof. The only rule of RKA is the transitivity of equality which translates
to the transitivity of ⇔, which is clearly provable in iFOL. It is easy
to see that the translation of all the axioms for the idempotent semiring
are provable using the proof rules of iFOL. It remains to show that the
translation of axioms (1) – (4) in Def. 16 are provable in iAL=.

(1): The translation is: [x = y ∨ ∃z (xPz ∧ (z = y ∨ zP+y))]⇒ (x = y ∨ xP+y).
If x = y, by inl we get a proof of x = y ∨ (xP+y). Otherwise, assume
∃z (xPz ∧ (z = y ∨ zP+y)). If z = y then by the Paramodulation rule
we get xPy, from which, by TC Base, we can get xP+y. If zP+y then
by Lemma 8 we get xP+y. Applying inr results in the desired proof.

(2): Symmetric to the proof of (1).

(3): We need to show that the following rule is derivable in iAL=:
H,x : D, y : D,H ′ ` ∃z

(
xP1z ∧

(
z = y ∨ zP+

2 y
))
⇒ xP1y

H, x : D, y : D,H ′ ` ∃z (xP1z ∧ zP2y)⇒ xP1y

Assume ∃z (xP1z ∧ zP2y) ⇒ xP1y and ∃z
(
xP1z ∧

(
z = y ∨ zP+

2 y
))

.
If z = y and xP1z then xP1y by the Paramodulation rule. Otherwise,
assume ∃z

(
xP1z ∧ zP+

2 y
)
. From ∃z (xP1z ∧ zP2y) ⇒ xP1y we can

derive xP1z, zP2y ` xP1y, from which, using the rule from Prop. 7, we
can obtain xP1z, zP

+
2 y ` xP1y. This entails that ∃z

(
xP1z ∧ zP+

2 y
)
`

xP1y. In both cases xP1y is derivable from the assumptions.

(4): Symmetric to the proof of (3) .

4.2 Kleene Algebra with Tests

Many of the applications of KA are enhanced using Kleene algebra with
tests (KAT) [23], which is an equational system for program verification
that combines KA with Boolean algebra. The presence of tests allows KAT
to model basic programming language constructs such as conditionals, while
loops, verification conditions, and partial correctness assertions.

Definition 20. A Kleene algebra with tests (KAT) is a KA with an em-
bedded Boolean subalgebra, i.e., a two-sorted structure (K,B,+, ·,∗ ,− , 0, 1)
such that:

1. (K,+, ·,∗ , 0, 1) is a KA,

2. (B,+, ·,− , 0, 1) is a Boolean algebra,

3. B ⊆ K.

17

Elements of B, denoted by b, c, ..., are called tests, and the Boolean comple-
mentation operator − is defined only on them.
Relational Kleene algebra with test (RKAT) is RKA with test, where tests
are simply subsets of the identity relation on the domain U . The Boolean
complementation operator on tests gives the set-theoretic complement in the
identity relation.

Let L be a first-order signature of binary predicates, P1, P2, .., B1, B2, ...
with equality. We expand the translation from a RKA expression into an
iAL= formula, to a translation of a RKAT expression into an iAL= formula
by adding the following clause:

• For each atomic test b assign a distinct predicate symbol Bi and define:

|b| :=Bi (x, y) ∧ x = y∣∣b̄∣∣ :=¬Bi (x, y) ∧ x = y

Definition 21. The system iALT= is obtained by adding to iAL= axioms
of the form Bi (x, y) ∨ ¬Bi (x, y) for each predicate Bi.

The translation of each test may be viewed in iALT= as a decidable unary
predicate. This is since using the Paramodulation rule from any formula of
the form Bi(x, y) ∧ x = y one can deduce Bi (x, x).14

Theorem 22. For E a valid expression of RKAT , |E| is iALT= provable.

Proof. Clearly all the translations of the axioms of RKA remain provable
in iALT=. It remains to show that the translated axioms for the boolean
algebra are provable in iALT=. The translated axioms of associativity, com-
mutativity and distributivity of + and · are provable as in the case of RKA.
We next show that the translations of the remaining axioms are provable.

• b · b̄ = 0: The translation is ∃z (B (x, z) ∧ x = z ∧ ¬B (z, y) ∧ z = y) ⇔
False. The right to left implication is clearly provable. For the con-
verse, ∃z (B (x, z) ∧ x = z ∧ ¬B (z, y) ∧ z = y) easily entails B (x, x) ∧
¬B (x, x), from which False is provable, since ¬B (x, x) is an abbrevi-
ation of B (x, x)⇒ False.

• b + b̄ = 1: The translation is (B (x, y) ∧ x = y) ∨ (¬B (x, y) ∧ x = y) ⇔
x = y, which is provably equivalent to (x = y ∧ (B (x, y) ∨ ¬B (x, y))) ⇔
x = y. Thus, the left to right implication is clearly provable. As
B (x, y) ∨ ¬B (x, y) is an axiom of the system iALT=, the right to left
implication is also provable.

14Tests in constructive systems are the properties which are decidable, thus the system
includes instances of the Law of Excluded Middle for each test (and only for them). This
correlates to the fact that in Kleene algebra with tests the Boolean complementation
operator is defined only on tests.

18

• b+ (b · c) = b: The translation of the axiom is the formula:
[(B1 (x, y) ∧ x = y) ∨ ∃z.B1 (x, z) ∧ x = z ∧B2 (z, y) ∧ z = y] ⇔ B1 (x, y) ∧
x = y. The right to left implication is immediate. For the other
direction, ∃z (B1 (x, z) ∧ x = z ∧B2 (z, y) ∧ z = y) entails B1 (x, y) ∧
B2 (x, y) and ∃z (x = z ∧ z = y), from which B1 (x, y) and x = y are
provable.

• b · (b+ c) = b: The translation of the axiom is the formula:
∃z (B1 (x, z) ∧ x = z ∧ ((B1 (z, y) ∧ z = y) ∨ (B2 (z, y) ∧ z = y)))⇔
(B1 (x, y) ∧ x = y). The left to right implication is similar to the
proof of the last axiom. For the converse direction, observe that from
B1 (x, y) ∧ x = y the formula ∃z (B1 (x, z) ∧ x = z ∧B1 (z, y) ∧ z = y)
is derivable, and from it the left hand side is derivable.

RKAT is especially interesting because it closely models our intuition
about programs. For instance, the if and while program constructs are
encoded in RKAT as in propositional Dynamic Logic:

if b then p else q := bp+ b̄q

while bdo p := (bp)∗ b̄

By the above translation, the construct if b then p else q can be expressed
by a formula equivalent to (B (x, x) ∧ P1 (x, y))∨(¬B (x, x) ∧ P2 (x, y)), and
the construct while bdo p is expressible in iALT= by a formula equivalent
to
(
(B (x, x) ∧ P (x, y))+ ∨ x = y

)
∧ ¬B (y, y).

Another connection to programming derives from the relation between
iALT= and the theory of flowchart schemes (e.g., [28]). A central question
in the theory of flowchart schemes is scheme equivalence. In [28] Manna
presents examples of equivalence proofs done by transformations on the
graphs of the schemes. In [23] KAT was used to recast much of the the-
ory of flowchart schemes into an algebraic framework by assigning to each
flowchart scheme a KAT expression. Thus, the question of scheme equiv-
alence was replaced by the question of equality between KAT expressions.
The translation algorithm given in this section shows that the problem of
scheme equivalence amounts to the question of equivalence in iALT= be-
tween two formulas.

There are a number of benefits to reasoning about programs in iALT=
as oppose to RKAT . First, while RKAT can be embedded into iALT=,
the language of iALT= is far richer than that of RKAT . Hence, there are
many meaningful statements about programs that cannot be formulated
in RKAT but can be captured in iALT=(e.g. “there is a state to which
each run gets to (on any input)”) Another key feature of iAL is that proofs
of specifications in iAL carry their computational content in the realizer.

19

Thus, proving an iAL formula results in a realizer which can be thought of
as holding the computational element of a program. Even simple assertions,
such as A+(x, y)⇒ ∃zA(z, y), have interesting realizers that depend on the
tcind realizer, and thus correspond to recursive programs. Moreover, since
iALT= is an effective, constructive proof system, it is more amenable to
implementation.

5 Further Research

We argue that iAL is a natural “next step” one needs to take, starting
from iFOL, in order to capture many applications in computer science and
mathematics. In this work we have demonstrated a few of them, yet fur-
ther work is still needed to provide more evidence for this claim and to
explore the natural scope of iAL. One application of iAL in computer
science might be related to distributed protocols. One can develop effi-
cient deployed algorithms from the natural constructive proofs of theorems
about data structures expressible in iAL, and explore specific direct use of
such proofs, e.g. in building distributed protocols and making them attack-
tolerant. We further plan to explore the connections between iAL to new
useful variations of KAT (KAT + B! [17], Kleene Algebra with Equations
[25], Kleene algebras in software defined networks [14]), mostly motivated
by concrete applications for verification.

Exploring ways of strengthening iAL in a natural way are also needed.
One standard way is to develop a method for handling constants and func-
tion symbols in a polymorphic way. Further work is required in order to
explore some proof theoretical properties of the system iAL. For instance,
we conjecture that the proof system for iAL satisfy some appropriate form
of the subformula property, but it is clear that the usual definition of this
notion should be revised.15 Thus the induction rule of the system satisfies
the subformula property only if we take a formula to be a subformula of
every substitution instance of it. We also plan to determine and explore
fragments of the system iAL that are more convenient to work with (e.g.
they admit full cut-elimination), but are still sufficient for at least some con-
crete applications. An example of such a fragment may be the one which
corresponds to the use of the deterministic transitive closure operator (see,
e.g., [21]).

15Exactly as the straightforward notion of subformula used in propositional languages
is changed on the first-order level, where for example a formula of the form ψ{ t

x
} is

considered to be a subformula of ∀xψ, even though it might be much longer than the
latter.

20

Acknowledgment

This research was partially supported by the Ministry of Science, Technology
and Space, Israel, and the Cornell University PRL Group.

References

[1] Peter Aczel. The type theoretic interpretation of constructive set the-
ory. In Angus Macintyre, Leszek Pacholski, and Jeff Paris, editors, Logic
Colloquium ’77, volume 96 of Studies in Logic and the Foundations of
Mathematics, pages 55–66. Elsevier, 1978.

[2] Peter Aczel. The type theoretic interpretation of constructive set the-
ory: Inductive definition. In Logic, Methodology and Philosophy of
Science VII, pages 17–49. Elsevier, 1986.

[3] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton,
Christoph Kreitz, Lori Lorigo, and Evan Moran. Innovations in com-
putational type theory using nuprl. Journal of Applied Logic, 4(4):428–
469, 2006.

[4] Arnon Avron. Transitive closure and the mechanization of mathemat-
ics. In Thirty Five Years of Automating Mathematics, pages 149–171.
Springer, 2003.

[5] Bruno Barras. Sets in coq, coq in sets. Journal of Formalized Reasoning,
3(1):29–48, 2010.

[6] Joseph L. Bates and Robert L. Constable. Proofs as programs. ACM
Trans. Program. Lang. Syst., 7(1):113–136, 1985.

[7] Yves Bertot and Pierre Castéran. Interactive theorem proving and pro-
gram development: Coq’Art: the calculus of inductive constructions.
springer, 2004.

[8] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda–
a functional language with dependent types. In Theorem Proving in
Higher Order Logics, pages 73–78. Springer, 2009.

[9] Adam Chlipala. A Verified Compiler for an Impure Functional Lan-
guage. In POPL, pages 93–106, 2010.

[10] Liron Cohen and Arnon Avron. Ancestral logic: A proof theoretical
study. In Ulrich Kohlenbach et al., editor, Logic, Language, Infor-
mation, and Computation, volume 8652 of Lecture Notes in Computer
Science, pages 137–151. Springer, 2014.

21

[11] Robert L. Constable. Constructive mathematics as a programming
logic I: Some principles of theory. North-Holland Mathematics Studies,
102:21–37, 1985.

[12] Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleave-
land, James F. Cremer, Robert W. Harper, Douglas J. Howe, Todd B.
Knoblock, Nax P. Mendler, Prakash Panangaden, James T. Sasaki, and
Scott F. Smith. Implementing mathematics with the Nuprl proof devel-
opment system. Prentice Hall, 1986.

[13] Robert L. Constable and Mark Bickford. Intuitionistic Completeness of
First-Order Logic. Annals of Pure and Applied Logic, 165(1):164–198,
2014.

[14] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and
Laure Thompson. A coalgebraic decision procedure for netkat. In Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 343–355. ACM, 2015.

[15] Harvey Friedman. The consistency of classical set theory relative to
a set theory with intuitionistic logic. The Journal of Symbolic Logic,
38(2):pp. 315–319, 1973.

[16] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh
LCF: a mechanized logic of computation, volume 78. Springer, 1979.

[17] Niels B. B. Grathwohl, Dexter Kozen, and Konstantinos Mamouras.
KAT+ B! In Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), page 44. ACM, 2014.

[18] Joseph Y. Halpern, Robert W. Harper, Neil Immerman, Phokion G. Ko-
laitis, Moshe Y. Vardi, and Victor Vianu. On the unusual effectiveness
of logic in computer science. Bulletin of Symbolic Logic, 7(02):213–236,
2001.

[19] Robert W. Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. Journal of the ACM (JACM), 40(1):143–184, 1993.

[20] Jason J. Hickey. The MetaPRL logical programming environment. PhD
thesis, Cornell University, 2001.

[21] Neil Immerman. Languages that capture complexity classes. SIAM
Journal on Computing, 16(4):760–778, 1987.

[22] Stephen C. Kleene. Representation of Events in Nerve Nets and Fi-
nite Automata. Memorandum (Rand Corporation). Rand Corporation,
1951.

22

[23] Dexter Kozen and Allegra Angus. Kleene algebra with tests and pro-
gram schematology. Technical report, Cornell University, 2001.

[24] Dexter Kozen and Adam Barth. Equational verification of cache block-
ing in lu decomposition using kleene algebra with tests. Technical re-
port, Cornell University, 2002.

[25] Dexter Kozen and Konstantinos Mamouras. Kleene algebra with equa-
tions. In Automata, Languages, and Programming, pages 280–292.
Springer, 2014.

[26] Xavier Leroy. Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant. volume 41, pages 42–54. ACM,
2006.

[27] Tal Lev-Ami, Neil Immerman, Tom Reps, Mooly Sagiv, Siddharth Sri-
vastava, and Greta Yorsh. Simulating reachability using first-order logic
with applications to verification of linked data structures. In Automated
Deduction–CADE-20, volume 3632 of Lecture Notes in Computer Sci-
ence, pages 99–115. Springer, 2005.

[28] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill,
Inc., 1974.

[29] Zohar Manna and Richard Waldinger. The logical basis for computer
programming, volume 1. Addison-Wesley Reading, 1985.

[30] Per Martin-Löf. Constructive mathematics and computer program-
ming. Studies in Logic and the Foundations of Mathematics, 104:153–
175, 1982.

[31] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory. Studies
in proof theory. Bibliopolis, 1984.

[32] John McCarthy. A formal description of a subset of algol. Technical
report, DTIC Document, 1964.

[33] James D. Monk. Mathematical Logic. Number 1-243 in Graduate Texts
in Mathematics. Springer, 1976.

[34] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: a proof assistant for higher-order logic, volume 2283.
Springer, 2002.

[35] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming
in Martin-Löf ’s type theory: an introduction. International series of
monographs on computer science. Clarendon Press, 1990.

23

[36] Vincent Rahli, Nicolas Schiper, Robbert Van Renesse, Mark Bickford,
and Robert L. Constable. A diversified and correct-by-construction
broadcast service. In The 2nd International Workshop on Rigorous
Protocol Engineering, 2012.

[37] Morten H. Sørensen and Pawel Urzyczyn. Lectures on the Curry-
Howard Isomoprhism. Elsevier, 2006.

[38] Anne S. Troelstra and Dirk Van Dalen. Constructivism in Mathematics:
An Introduction. Number 1 in Constructivism in Mathematics. North-
Holland, 1988.

24

	Introduction
	The System bold0mu mumu iFOLiFOLiFOLiFOLiFOLiFOL
	Realizability Semantics for bold0mu mumu iFOLiFOLiFOLiFOLiFOLiFOL
	Proof System for bold0mu mumu iFOLiFOLiFOLiFOLiFOLiFOL over Domain bold0mu mumu DDDDDD
	Constructive/Intuitionistic Metatheory

	The System bold0mu mumu iALiALiALiALiALiAL
	The Transitive Closure Operator
	Realizability Semantics for bold0mu mumu iALiALiALiALiALiAL
	Proof System for bold0mu mumu iALiALiALiALiALiAL over Domain bold0mu mumu DDDDDD
	Soundness for bold0mu mumu iALiALiALiALiALiAL

	Programming in bold0mu mumu iALiALiALiALiALiAL
	Kleene Algebra
	Kleene Algebra with Tests

	Further Research

