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Abstract

Formalized mathematics and mathematical knowledge management (MKM) are
extremely fruitful and quickly expanding fields of research at the intersection of math-
ematics and computer science. The declared goal of these fields is to develop comput-
erized systems that effectively represent all important mathematical knowledge and
techniques, while conforming to the highest standards of mathematical rigor. The
use of proof assistants or interactive theorem provers has seen tremendous growth in
recent years because of its record in assisting with the development and verification
of formal proofs by human-machine collaboration. It has also found numerous high
value applications in different research areas, including cyber security, cyber physical
systems, correct-by-construction programming, and advanced programming language
design. This rapidly developing field is bound to ultimately have a huge impact on
the culture of mathematical practice and education.

Recent years, however, have seen an estrangement between the informal math-
ematical practice and the mainstream work in the field of MKM. Thus, while set
theory is viewed by most mathematicians as the foundation of the mathematics they
practice, this is not reflected in most extant proof assistants. We believe that the
use for MKM of a set-theoretical frameworks could help overcome this increasing rift
between what most mathematicians consider to be the basis of mathematics, and
what existing formal-reasoning systems actually implement. Accordingly, this thesis
aims at a formalization of applicable mathematics on the basis of a convenient for-
mal set-theoretical framework which is suitable for mechanization and reflects real
mathematical practice as presented in ordinary (or computationally-oriented) mathe-
matical discourse. Another related goal of this thesis, motivated also by philosophical
considerations, is to identify the minimal ontological commitments required for the
above-mentioned task of the formalization of applicable mathematics. These (differ-
ent, but related) goals can be simultaneously pursued by exploiting the modularity
of the framework employed, which enables the use of different logics and set theories
of different strength. Therefore, in this work we consider the following variations of
the framework and of the theories developed within it:

• The underlying logic can be classical logic, or, in cases where the computational
power of a theory should be enhanced, intuitionistic (constructive) logic.
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• We take ancestral logic (the logic obtained by adding to first-order logic a tran-
sitive closure operator) to be the minimal underlying logic which is sufficient
for the development of mathematics. We present and investigate from a proof
theoretical point of view a very natural Gentzen-style proof system for ances-
tral logic, and prove its completeness with respect to a Henkin-style semantics.
Then, motivated by the fact that this logic is also fundamental in many areas
of computer science, we develop a constructive version of it which includes a
natural proof system as well as a corresponding realizability semantics. The for-
mal system is proven to be strongly sound with respect to this semantics in the
sense that provable formulas are uniformly realizable. Then we turn to some
applications of this logic in computer science, most notably Kleene Algebras
with tests and program schemes.

• We adopt the predicative approach to mathematics in order to identify the most
basic set theories which are truly indispensable for various levels of mathemat-
ical practice. This approach is arguably the most appropriate framework for
developing computationally-oriented mathematics, while still being sufficient
for scientifically applicable mathematics. A key property of the basic predica-
tive theories we develop in this work is that they are definitional. That is, each
of these theories has a minimal model, every element of which is definable by
some closed term of the corresponding language. This allows for a very concrete,
computationally-oriented interpretation.

Finally, we demonstrate the usefulness of the framework for the formalization of
mathematics by developing in it large portions of scientifically applicable mathemat-
ics, focusing on analysis. We show that even on the first-order level, most of classical
analysis can be carried out already within the minimal system of the framework and
its minimal model. However, this development of mathematics involves coding, as
well as treating the real line as a proper class. In contrast, using the minimal frame-
work which is based on ancestral logic allows for a more natural and straightforward
development of classical analysis.
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Chapter 1

Introduction

1.1 Foundations and Formalizations of Mathematics

Formalized mathematics and mathematical knowledge management (MKM) are
bound to ultimately have a huge impact on the culture of mathematical practice
and education (e.g., correctness of proofs will be unquestionable, powerful results will
be shown using huge non-human-readable proofs, etc.). These fields of study are very
diverse and have many different (somewhat conflicting) approaches. The global ap-
proach aims at creating a unified framework which is sufficient for the formalization of
the full-spectrum of mathematics, while the local approach deals with the implemen-
tation of concrete fractions of mathematics (sometimes in a rather ad-hoc manner).
Unfortunately, the past decades have seen an increasing estrangement between the re-
ality of informal mathematical practice and computer-implemented theorem proving.
On one hand, type-free set theory is viewed by most mathematicians as the founda-
tion of the mathematics they practice, and as such it is the most natural framework
for MKM, especially for goals like those of the AUTOMATH project ([33, 84, 121])
and the QED manifesto ([17, 118]). On the other hand, most of the current work in
the field of formalized mathematics and MKM is devoted to approaches and systems
that are rather different from the set-theoretical ones. It either employs sophisticated
type theories, with different notions of constructibility and computation that move
more and more away from the common ground of “standard” mathematics and its
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2 Chapter 1. Introduction

standard first-order foundations (like in Coq [18, 19, 20] or Nuprl [29, 30]), or it uses
various fragments of higher-order logic (like in Isabelle/HOL [86]).1

In this work we address the above-mentioned anomaly by employing a user-friendly
formal set-theoretical framework for formalizing mathematics which is suitable for
mechanization and better reflects the way rigorous mathematics is (informally) pre-
sented in textbooks. The framework also settles to a great extent the existing tension
between the global and the local approaches to the formalization of mathematics.
This is because while it enables the use of set theories of different strength, it is very
flexible and allows the use of it at different levels which are suitable for specific goals.

This work is also motivated by a philosophical approach to the foundations of
mathematics. The well-known indispensability argument (propounded by Quine and
Putnam, see e.g. [90, 91]) states that the indispensability of mathematics to empirical
science gives us good reason to believe in the existence of mathematical entities.
According to this line of argument, reference to mathematical entities, such as sets,
numbers and functions, is indispensable to our best scientific theories, and so we
ought to have ontological commitment to all these mathematical entities. This raises
the following two questions:

• what exactly are those mathematical entities which are indispensable to scien-
tific theories?

• what logical principles governing those mathematical entities are truly needed?

In keeping with this philosophical stance, as well as for practical reasons, this work
identifies what we believe to be the minimal ontological commitments required for the
formalization of applicable mathematics and uses the modularity of the framework
to base the formal systems on them. This includes finding the minimal underlying
logic which is sufficient for the development of mathematics, as well as recognizing
the weakest possible set theories which are truly indispensable for various levels of
mathematical practice. The minimality requirements naturally leads to a concrete
variant of the system which is very suitable for mechanization. Nevertheless, it is
clear that in order for the framework to be convenient for mechanical manipulations
each of these minimal fragments (i.e. the underlying logic and the set theory) should
also contain some computational power.

1Two notable exceptions are Mizar [96, 111] and Metamath [81].
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1.1.1 The Indispensable Logic

Officially, most mathematicians accept that some first-order axiomatization of set
theory (like Zermelo-Fraenkel set theory, ZF , or ZF with choice, ZFC) provides
the standard foundations of mathematics. However, while first-order logic (FOL)
clearly has many advantages (it is well studied and understood and it has many
natural complete proof systems which are convenient for mechanization), it still seems
to be unsuitable and too weak for this task. Thus, one cannot even give in it a
categorical characterization of the most basic concept of mathematics - the natural
numbers. Though FOL is too weak, we believe that choosing to use high-order logics
(HOL) has many disadvantages too. First, they are based on debatable ontological
commitments which are not universally accepted. Thus it does not seem satisfactory
that dealing with basic notions (such as the natural numbers) requires the use of the
strong notions involved in HOL, such as quantifying over all subsets of infinite sets.
In fact, as claimed by Quine [93] with justice, higher-order “logics” are actually not
logics at all, but set theories in disguise.2 In addition, even second-order logic (SOL)
is frequently too strong and very difficult to mechanically work with.

The above considerations imply that the most suitable framework for mechaniz-
ing mathematical reasoning should be provided by some logic which is intermediate
between FOL and SOL. In search for the fundamental, indispensable principles that
FOL is lacking, it is clear that the main feature one should seek to include is an ap-
propriate induction principle, something which is not provided directly in FOL. We
believe that the most prominent choice of such logic is ancestral logic (AL)3 — the
logic obtained by augmenting FOL with the concept of transitive closure of a given
relation [4, 61, 76, 77, 82, 102, 105]. It is clear that any system designed for capturing
the ability to do mathematics must provide the means to create the transitive closure
of a relation and to make appropriate inferences regarding it (for instance, if a certain
property is hereditary between objects in a given relation, then it will also be hered-
itary between objects which are related by the transitive closure of that relation).
Thus, it was argued for in [4] that AL provides the most natural framework for the
formalization and mechanization of mathematics.

2The precise quotation is “set-theory in sheep’s clothing”.
3Ancestral logic is also known in the literature as Transitive Closure Logic.



4 Chapter 1. Introduction

Several other logics which are intermediate between FOL and SOL have been
suggested in the literature, such as: weak second-order logic, ω-logic, logics with
a “cardinality quantifier” (i.e. “there are infinitely many”), and logics with Henkin
quantifiers. In [102] it is proven that all of the above mentioned logics have the same
expressive power as AL, in the sense that they all define the same class of infinite
structures. Still, AL seems to us to be the most promising choice because there are
several reasons to prefer it over the others: it is very useful also in the finite case; it
seems to be the easiest choice from a proof-theoretic point of view; and it enters very
naturally in computer science applications (see below). Another important advantage
of AL is simply the simplicity of the notion of transitive closure. Thus any person,
even with no mathematical background whatsoever, can easily grasp the concept of
the ancestor of a given person (or, in other words, the idea of the transitive closure
of a certain binary relation).

In addition to its use in the formalization of mathematics, logic has also played a
major role in computer science since the early days of the field. In the famous paper
with the telling name “On the Unusual Effectiveness of Logic in Computer Science”
[52], it is forcefully noted that “at present concepts and methods of logic occupy a
central place in computer science, insomuch that logic has been called ‘the calculus
of computer science’ [75]”. To demonstrate this claim, the paper then studies an im-
pressive (but explicitly non-exhausting) list of applications of logics in different areas
of computer science: descriptive complexity; database query languages; applications
of constructive type theories; reasoning about knowledge; program verification and
model checking. But again: what logic has such effectiveness? While it is quite usual
to identify ‘logic’ with FOL4, a check of the above list of applications from [52] re-
veals that first-order logic is sufficient for none of them. The only exception might
seem to be its use for database query languages: [52] mentions only query languages
which are directly based on FOL, like SQL. However, such languages cannot express
important queries like “find all the people who will be in risk of being infected by
Ebola if some infected passenger is found on flight 001”. This is the reason why the

4Actually, at this point we are only referring to the formal languages used in the applications,
ignoring (for the time being) other essential components of the notion of a ‘logic’, like the corre-
sponding consequence relation. We note that such overloading in terminology is quite common in
the literature.
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SQL 3 (1999) standard added a WITH RECURSIVE construct which allows transi-
tive closures to be computed inside the query processor, and by now such a construct
is implemented also in IBM DB2, Microsoft SQL Server, and PostgreSQL.5 Similar
extensions of FOL are needed in all the other examples given in [52]:

• The characterization of complexity classes which is done in descriptive com-
plexity always uses logics that are more expressive than FOL, like SOL, or
logics which are intermediate between FOL and SOL like FOL enriched with
a transitive closure operator, or the strongly related fix-point logics.

• Not only do type theories obviously go beyond FOL, but even their presenta-
tion and description cannot be done in FOL, since their introduction makes a
massive use of inductive definitions of typing judgments. However, they can be
done in FOL enriched with a transitive closure (TC) operator.

• A crucial notion for reasoning about knowledge is that of common knowledge.
This notion is inductively defined in terms of the basic knowledge operators.
However, this definition is not expressible in FOL (though it is again easily
defined if a TC operator is added to FOL), and so in the language described
in [52] it is introduced by brute force, as an independent operator.

• Verification of programs obviously involve inductive arguments, but such argu-
ments are not a part of the logical machinery of FOL. Similarly, it is noted in
[119] that “In all interesting applications of model-checking, reachability prop-
erties have to be checked, which are not expressible in the FOL-signature of
labeled graphs (transition systems)”. Again the problem is FOL’s failure to
define transitive closures of relations.

All these examples (as well as many others6) indicate that the crucial shortcoming
of FOL is its inability to provide inductive definitions in general, and the notion
of the transitive closure of a given binary relation in particular. In fact, because of
this inability FOL cannot even serve as its own metalogic, since all its basic syntactic
categories (such as terms, formulas, and formal derivations of formulas) are introduced

5Datalog too implements transitive closure computations.
6To give just one more example from computer science: in [71] the authors write: “Some appeal

to second-order logic appears necessary here because transitive closure is not first-order definable”.
In fact, transitive closure is the only “second-order” feature they need.
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via inductive definitions. Actually, the latter is true for any formal system and logic
(see the example above of type theories). Hence only some extension of FOL which
allows to introduce finitary inductive definitions ([41]) can be used as a framework
for introducing and studying formal systems. In [4] it was shown (on the basis of
Feferman’s characterization in [41] of finitary inductive definitions and the system
FS0 introduced there for that purpose) that the minimal framework that can serve
for this goal is AL. We strongly believe that just as in the case of mathematics, AL,
rather than FOL, should be taken as the basic logic which underlies most applications
of logic to Computer Science.

In recent years a great deal of attention has been given to AL in the area of finite
model theory, and in related areas of computer science, like complexity classes (see
[36, 73]). However, not much has been done so far about it in the context of arbitrary
structures, or from a proof theoretical point-of-view.

According to the above-mentioned considerations, one goal of this thesis is to
develop the theory of AL to the point it can serve as a reasonable (and in many cases,
better) substitute for the use of FOL or HOL in the formalization of mathematics, as
well as in different areas of computer science. We shall also demonstrate the usefulness
of AL by exploring several applications of it.

1.1.2 The Indispensable Set Theory

The main principle of naive set theory is the comprehension schema:

∃z(∀x.x ∈ z ↔ ϕ)

where ϕ is a formula in which z is not free (but may contain other parameters). This
basically states that the set {x |ϕ} exists for any ϕ. Unfortunately, it is well known
that allowing this for any formula ϕ would lead to paradoxes. Thus, any formal
axiom system for set theory must replace the general comprehension schema by some
particular (“safer”) instances of it. The strength of the different formal set theories
is determined by the variants of these instances.

The standard axiomatization of set theory is given by Zermelo-Fraenkel set theory,
ZF . This system is based on classical logic, and its language, LZF , is a first-order
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language with equality which includes (besides =) only one binary predicate symbol:
∈. The main instance of the general comprehension schema in ZF is the Restricted
Comprehension Axiom Scheme:

∀y∃z∀x (x ∈ z ↔ (x ∈ y ∧ ϕ))

Zermelo, in his original formulation of set theory [120], called properties for which
the restricted comprehension is allowed “definite”. However, he gave no characteri-
zation of formulas which define such “definite” properties. Later, Skolem identified
Zermelo’s concept of “definite” with first-order definability in LZF (see [43] for more
details). This identification became a major component of the formal system ZF . In
other words, the restricted comprehension is an axiom of ZF for every formula ϕ in
LZF . This makes ZF a rather strong system whose ontological assumptions maybe
questioned. In particular, it allows what is known as “impredicative” definitions of
sets (we return to this concept in the sequel).

Despite the success of ZF as the “official” formulation of set theory, in order to
use it for the formalization of applicable mathematics it is necessary to overcome
the following serious gaps that exist between working formally within ZF and actual
mathematical practice:

• The language of ZF is very remote from real mathematical practice. Thus,
almost all textbooks define set theories in languages in which variables (and
perhaps a couple of constants) are the only terms which are directly provided.
This feature makes these formalizations almost useless from a computational
point of view. In contrast, all modern texts in all areas of mathematics (includ-
ing set theory itself) employ much richer and more convenient languages. In
particular: they make extensive use of terms for denoting sets, like abstraction
terms of the form {x | ϕ}.

• ZF treats all the mathematical objects on a par, and so hides the computational
significance of many of them. Thus although certain functions are first-class
citizens in many programming languages, in set theory they are just “infinite
sets”, and ZF in its usual presentation is an extremely poor framework for
computing with such sets (or handling them in a constructive way).
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• Full ZF is far too strong for core mathematics, which practically deals only
with a small fraction of the set-theoretical “universe”. It is obvious that much
weaker systems, corresponding to universes which are smaller, more effective,
and better suited for computations, would do (presumably, such weaker systems
will also be easier to mechanize).

The framework employed in this work (based on [5, 8]) aims to tackle all above-
mentioned problems. It reflects real mathematical practice in making an extensive
use of statically defined abstract set terms, in the same way they are used in ordinary
mathematical discourse. Moreover, the framework will be provided with strong direct
definitional power (akin to that used in informal mathematical texts), as well as
computational power. This is due to the fact that its set of closed terms suffices
for denoting every concrete set (including infinite ones) that might be needed in
applications, as well as for computations with sets. The computational power of the
framework can also be enhanced by using a constructive variant of it (See Section 2.1).
Also, while the framework is to be based on set theory, it does not entail that the
entire set-theoretical universe is indispensable. The flexibility of the framework allows
us to invoke only the minimal set-theoretical ontological commitments and axioms
required for that part of mathematics which is indispensable to (current) scientific
theories (See Section 2.2).

1.2 Thesis Outline

The structure of this thesis is as follows:
Chapter 2 is a short overview of what we believe to be the two main alternatives

to the standard approach to mathematics: the constructive one, and the predicative
one.

Chapter 3 is devoted to presenting Ancestral Logic and exploring some of its basic
properties. First, the formal definitions of (variants of) ancestral logic are provided
and their most important model-theoretic properties are explored. Then we turn to
a proof theoretical investigation of ancestral logic, and Gentzen-style proof systems
for it are presented. Despite the fact that these systems cannot be complete with
respect to the standard semantics, in Section 3.4 we provide a natural Henkin-style
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semantics for ancestral logic and prove that the system for classical ancestral logic is
complete with respect to it.

In Chapter 4 we focus on a constructive (intuitionistic) version of ancestral logic.
We present a natural realizability semantics for this logic and provide a proof system
for it which is strongly sound with respect to this semantics in the sense that prov-
able formulas are uniformly realizable. This is followed by an investigation of some
applications of intuitionistic ancestral logic for computer science. We show that this
logic subsumes Kleene Algebras with Tests and thus serves as a natural programming
logic for specifying, developing and reasoning about programs.

In Chapter 5 the general formal framework we use for formalizing predicative
mathematics is presented. The framework makes it possible to employ in a natural
way all the usual set notations and constructs as found in textbooks on naive or
axiomatic set theory. A main feature of the framework is that the introduction
of these set constructs is done statically, in a purely syntactic way. We present
several variations of the formal system: a first-order one, and one that is based on
the language of ancestral logic. Each of them also has two versions in accordance
to the underlying logic taken: classical or intuitionistic. Then possible models for
the various systems are explored. Next we expand the basic languages in order to
introduce fundamental set theoretic concepts such as classes, relations and functions.
This extension is done statically in keeping with the static nature of our framework.
We further show how the natural numbers are incorporated into our framework both
on the first-order level and by using the power of ancestral logic.

In Chapter 6 we demonstrate the usefulness of the framework described in Chapter
5, by developing in it large portions of applicable mathematics. We show that even
on the first-order level, most of classical analysis can be carried out already within the
minimal system of the framework and its minimal model. However, the restriction
to this minimal first-order framework has its price: the development of mathematics
involves coding, as well as treating the real line as a proper class. In contrast, using
the minimal framework which is based on ancestral logic allows for a more natural
development of classical analysis.

Finally, in Chapter 7 we conclude with a discussion of some directions for further
research.
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1.3 Notations

Below are some useful notations we shall use in this thesis.

• Fv(exp) denotes the set of free variables occurring in exp.

• ϕ
{
t1
x1
, ..., tn

xn

}
denotes the result of simultaneously substituting ti for the free

occurrences of xi in ϕ (i = 1, ..., n). For simplicity, when there is no chance of
confusion, we sometimes write ϕ (t1, ..., tn) instead of ϕ

{
t1
x1
, ..., tn

xn

}
.

• We sometimes write ϕ (x) to indicate that x is free in ϕ.

• Let σ be some first-order signature, and let L be the corresponding language
based on σ.

– A structure for L is an ordered pair M = 〈D, I〉, where D is a non-empty
set of elements (the domain) and I is an interpretation function on σ.

– Let v be an assignment in M and T is a set of formulas in L. We write
M, v |= T for the pair 〈M, v〉 satisfies T . In case T is satisfied under all
assignments in M we write M |= T .

– v [x := a] denotes the x-variant of v which assigns to x the element a in D.



Chapter 2

General Background

As noted in the Introduction, the framework employed in this work is flexible and
allows for different levels of formalization. A main feature of the framework is that
it opens the door to making explicit and using the computational content which
already exists implicitly in the foundation of set theory. However, in order to create a
natural, user-friendly system for formalizing applicable mathematics which is suitable
for mechanization it would be better to enhance the computational power of the
system by invoking a more constructive approach. An overview of such constructive
approach is given in Section 2.1 below. Moreover, in order to identify the minimal set
theoretical universe which is indeed indispensable to applicable mathematics it might
be useful to look at a different philosophical approach than the platonic one. One such
alternative approach is the predicative approach to mathematics, which is reviewed
in Section 2.2 below. These two alternative approaches, the constructive one and the
predicative one, arose during the period of what was felt to be a foundational crisis
in the early 20th century. Each approach rejected some essential logical aspects of
classical mathematics. Thus, intuitionism (constructivism) criticized the unrestricted
use of the Law of Excluded Middle, while predicativism objected to the use of certain
type of definitions (which are known as “impredicative”).

2.1 The Intuitionistic Approach

The intuitionistic approach to mathematics was founded about the year 1907 by
Brouwer (see [56]). The intuitionistic philosophy is based on the idea that the truth

11
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of a mathematical statement can only be conceived via a construction that proves it.
As a result, Brouwer rejected the use of the Law of Excluded Middle, A∨¬A for any
formula A, which had been a pillar of classical logic for more than 2000 years. In
particular, he objected to indirect existence proofs in mathematics.1

Brouwer developed a rich informal model of computation in terms of which he
could interpret most concepts and theorems of mathematics, including set theory
[113]. This intuitive interpretation has come to be known among logicians as Brouwer,
Heyting, Kolmogorov (BHK) semantics when applied to formal intuitionistic logical
calculi, as first done by Heyting [55] and Kolmogorov [65].2 In 1945 Kleene [35, 63]
invented his realizability semantics for intuitionistic number theory in order to connect
Brouwer’s informal notion of computability to the precise theory of partial recursive
functions. By 1982 Martin-Löf [78, 79], building on the work of Kleene, refined the
BHK approach and raised it to the level of a formal semantic method for constructive
logics. The BHK semantics is strongly related, and one might even say equivalent,
to Curry-Howard Isomorphism3/realizability semantics/propositions as types/proofs
as terms/proofs as programs. This semantics plays an important role in building
correct-by-construction software and in the semantics of stronger constructive typed
systems, such as Computational Type Theory (CTT) [29], Intuitionistic Type Theory
(ITT) [79], Intensional-ITT [16, 87], the Calculus of Inductive Constructions (CIC)
[14], and Logical Frameworks such as the Edinburgh LF [53].4 It is important to note
that unlike classical logic, there are several different approaches (see, e.g., [110]) for
providing precise semantics to intuitionistic logic. We believe that the most fruitful
and faithful to the intuitionistic conception of knowledge is the BHK semantics.

The basic idea of the BHK semantics is to define what an intuitionistic (construc-
tive) proof should consist of, by indicating how the connectives and the quantifiers
of the language should be interpreted. Thus, the meaning of a proposition, say P ,

1While Brouwer’s motivation for intuitionism was a philosophical one, Bishop [15] advocated the
constructive approach because it supports a computational view of mathematics.

2The name “BHK” was coined by Troelstra [109], where “K” initially stood for “Kreisel”, and
only later for “Kolmogorov”.

3It should be noted that the Curry-Howard Isomorphism is not an isomorphism, nor was it
invented by either Curry or Howard. In [107] several contributors to the principle are mentioned,
the main ones being Brouwer, Heyting, Kolmogorov, Kleene, deBruijn, Curry, Howard, Girard, and
Martin-Löf.

4All of these logics have been implemented by proof assistants such as Agda, Coq, Nuprl, and
Twelf.
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is given by a type whose elements can be understood as evidence for “knowing” P .
Given an intended constructive domain, a standard description of the BHK semantics
is as follows:

• ⊥ has no proof.

• a proof of A ∧B is given by presenting a proof of A and a proof of B.

• a proof of A ∨ B is given by presenting either a proof of A or a proof of B, as
well as stating which is proved.

• a proof of A→ B is a construction which transforms any proof of A into a proof
of B.

• a proof of ∃xA(x) is given by providing an element d of the domain, and a proof
of A(d).

• a proof of ∀xA(x) is a construction which transforms every proof that d belongs
to the domain into a proof of A(d).

A construction p that is a proof of a formula in the sense of the BHK semantics is
often called a proof term, or an evidence term, or a realizer.

The negation ¬A of a formula A is proven once it has been shown that there
cannot exist a proof of A, which means providing a construction that derives ⊥ (i.e.
falsum) from any possible proof of A. Thus, the standard definition of ¬A is as
A→ ⊥.

The constructive character of intuitionistic logic becomes particularly clear in the
BHK semantics due to the correspondence between derivations in the logic and terms
in simply typed λ-calculus, i.e., between proofs and computations. This correspon-
dence preserves structure in that reduction of terms correspond to normalization of
proofs. However, the correspondence given for implication and universal quantifica-
tion are notoriously imprecise because the notion of function is left undefined. One
way to make the BHK semantics precise is by requiring functions to be computable
(recursive). Note also that the above interpretation (except for ⊥) does not address
the case of atomic formulas. Nevertheless, in practice these rules seem to suffice for
codifying the constructive arguments of mathematicians.5

5Note that already on the informal level of the BHK semantics, one is forced to reject the Law
of Excluded Middle.
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The semantic tradition of realizability is grounded in precise knowledge of the
underlying computation system. Proof terms are part of a computation system, and
they can be evaluated. For constructive (intuitionistic) logics, a proof term can be
considered as a program or data that reveal the implicit computational content of the
proven propositions and make it explicit. Proof assistants based on computational
type theory or other constructive theories (such as Nuprl and Coq) can evaluate these
proof terms and thus extract their computational content.6

The axiomatic set theories, IZF [13] and CZF [2], are based on intuitionistic
first-order logic and their sets of axioms are similar to the axioms of ZF (they are
both formulated in the same language as ZF ). By adding to either of them the Law
of Excluded Middle we get full classical ZF .7 The main difference between CZF

and IZF is that the latter is impredicative (see the next section for an overview of
predicativism), while CZF is a predicative subsystem of IZF .

2.2 The Predicative Approach

As noted above, it seems that restricted variants of classical set theory would suffice
for ordinary mathematical practice (and may even be more compatible with it). How-
ever, the restriction imposed by the intuitionistic approach to mathematics, accord-
ing to which simple number-theoretic statements may have no definite truth value,
is rather strict and seems to violate the typical working mathematician’s intuition.
Predicativism offers an intermediate foundational stance for ordinary mathematical
practice. This approach admits very little, if any, of the classical set-theoretic universe
beyond what is used in applicable mathematics. It is for that reason that it seems to
us to indeed be the minimal set theoretical fragment needed for the formalization of
mainstream mathematics.

The predicativist program for the foundations of mathematics, initiated by
Poincaré [88, 89] and first seriously developed by Weyl [116], seeks to establish cer-
tainty in mathematics without revolutionizing it (as the intuitionistic program does).

6Note that classical logic can also be given a BHK-style semantics, where only some proof terms
are computable. This can be done by introducing “oracle” for treating the excluded middle [27], or
by using “virtual evidence” [26, 28].

7Another well-known formalization of intuitionistic set theory is CST [83], which provides a
formal foundation for Bishop’s program of constructive mathematics.
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The program (as is usually conceived nowadays) is based on the following two basic
principles:

(I) Predicative Definitions: In predicative mathematics higher order constructs,
such as sets or functions, are acceptable only when introduced through accept-
able definitions. A major principle for distinguishing between definitions which
are acceptable and those which are not is the Vicious Circle Principle (VCP).
The VCP, which was put forward in response to the set-theoretic paradoxes,
states that no object may be introduced by a definition which refers to a to-
tality to which this object is suppose to belong (definitions that violate the
VCP are called impredicative). Hence in defining a new construct one can only
refer to constructs which were introduced by previous definitions. Thus in the
predicative approach one cannot assume that there is a complete totality of
all definable objects of a certain kind; rather, each one comes into existence
through a definition in terms of previously defined objects.
The fundamental source of impredicativity in ZF is the Restricted Comprehen-
sion Axiom Scheme, which asserts the existence of the set {x ∈ z |ϕ} for every
previously formed collection z and every formula ϕ in LZF . However, since ϕ
may contain quantifiers ranging over the totality of all sets, this is impredica-
tive according to the VCP. Therefore, predicative set theory must weaken the
Restricted Comprehension Scheme.

(II) The Natural Numbers: In the standard predicative approaches to mathe-
matics it is accepted that the sequence of natural numbers is a basic intuitively
well-understood mathematical concept, and as a totality it constitutes a set.8

The reason is that the construction of the natural numbers is done by iteration
of a very simple, concrete step. In contrast, the concept of arbitrary subsets of
the natural numbers is not immediately given by mathematical intuition, since
we have no way of building up P (N) (the power set of N) in a step-by-step
manner. Accordingly, predicativism does not sanction power sets of infinite
sets. Therefore, predicative set theory cannot adopt ZF ’s Power Set Axiom.
Note that the illegitimacy of infinite power sets has the consequence that in
predicative mathematics apparently all sets are countable.

8[85] is a notable exception.
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The first principle, (I),was interpreted by Russell according to his philosophical views
of logic [97, 98], and incorporated in Principia Mathematica as the ramified type
theory (RTT) [117]. In RTT objects are divided into types, and each higher-order
type is further divided into levels. However, the use of levels makes it impossible to
develop mathematics in RTT, and so Russell had to add a special axiom of reducibility,
which practically destroyed the predicative nature of his system [94]. Principle (I) was
then taken again by Weyl in [116], but instead of Russell’s ramified hierarchy, Weyl
adopted principle (II) which goes back to Poincaré. Weyl’s predicativist program was
later extensively pursued by Feferman, who in a series of papers (e.g. [37, 38, 39, 40])
developed proof systems for predicative mathematics. Feferman’s systems are less
complex than RTT, and he has shown that a very large part of classical analysis can be
developed within them. He further conjectured that predicative mathematics in fact
suffices for developing all the mathematics that is actually indispensable to present-
day natural sciences. Despite this success, Feferman’s systems failed to receive in the
mathematical community the interest they deserve. Unlike constructive mathematics,
they were also almost totally ignored in the computer science community. The main
reason for this seems to be the fact that, on the one hand, Feferman’s systems are not
“revolutionary” (since they allow the use of classical logic), but on the other hand they
are still rather complicated in comparison to the impredicative formal set theory ZF ,
which provides the standard foundations and framework for developing mathematics.
In particular: Feferman’s systems still use complicated systems of types, and both
functions and classes are taken in them as independent primitives. Therefore, working
within these systems is somewhat complicated for someone used to the standard ZF
(or something similar).

Another recent attempt to develop predicative mathematics was made by Weaver
[114, 115], who demonstrated how core mathematics, particularly abstract analysis,
can be developed within a concrete countable universe J2 (the second set in Jensen’s
constructable hierarchy). The drawback of that work is that both the motivation
and the work itself were exclusively based on semantical considerations. Thus, it is
unclear how that framework can be turned into a (formal) mathematical theory like,
e.g., ZF .

It is important to note that the predicative approach is orthogonal to the debate
between the classical and intuitionistic approaches. Thus it may be based classically
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on the notion of truth, or, adopting intuitionism, on the concept of provability.9 We
follow this approach too in this work and present two variants for our predicative
framework (see Chapters 5 and 6).

9Thus Feferman explicitly states that his systems can be based on either of these logics. However,
it should be noted here that the predicativist literature tends to presume classical logic.





Chapter 3

Ancestral Logic

In this chapter and the next one we explore Ancestral Logic, AL, which is the logic
obtained from FOL by adding to it a transitive closure operator. As noted in the
Introduction, we believe that this logic provides a very suitable framework for the
formalization of effective mathematics, and is also fundamental in many areas of
computer science. In this chapter we mainly focus on the classical point of view of
AL, whereas a detailed account of an intuitionistic version of AL is provided in the
next chapter.

The chapter is organized as follows: In Section 3.1 the formal definitions of the
transitive closure operator and ancestral logic are given. Then, some of the most
important model-theoretic properties of ancestral logic are presented, and its expres-
sive power is described. Section 3.2 deals with ancestral logic from a proof-theoretic
point of view. Natural Gentzen-style systems which are sound for ancestral logic are
presented and their key features are explored. In Section 3.3 we show that in the
case of arithmetics the ordinal number of these systems is ε0, the ordinal of Peano
Arithmetic (PA) and Heyting Arithmetic (HA). Finally, in Section 3.4 we provide
a completeness theorem for the system for classical AL with respect to a natural
Henkin-style semantics.

Sections 3.1–3.3 are mainly based on [22, 23].1 The results in Section 3.4 have not
been published before.

1Some of the preliminary results in these sections were already given in the author’s M.Sc. thesis
[21], so we omit their proofs here.
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3.1 The Languages and their Semantics

The essential idea in embedding the concept of the transitive closure operator into
a logical framework is that one may treat a first-order formula with two (assigned)
free variables as a definition of a binary relation. Below are the corresponding formal
definitions of a classical and intuitionistic first-order logics augmented by a transitive
closure operator, and their semantics. Following suggestions made in, e.g., [4, 76, 77,
82], we present two types of the transitive closure operator: the reflexive one, and the
non-reflexive one.

Let σ be some first-order signature (with or without a distinguished equality
symbol), and let L be the corresponding first-order language.

Definition 3.1.1 (The languages).

• The language LTC is obtained from L by the addition of the transitive closure
operator (TC), together with the following clause concerning the definition of
a formula:

– for any formula ϕ in LTC , distinct variables x, y, and terms s, t,
(TCx,yϕ) (s, t) is a formula in LTC . The free occurrences of x and y in
ϕ become bound in this formula.

• The language LRTC is defined as LTC with TC replaced by RTC.

The intended meaning of the formula (TCx,yϕ) (s, t) is the “infinite disjunction”:

ϕ{ s
x
,
t

y
}∨∃w1(ϕ{

s
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,
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y
})∧ϕ{w1
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,
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y
})∨∃w1∃w2(ϕ{

s

x
,
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y
}∧ϕ{w1
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,
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y
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x
,
t

y
})∨. . .

where w1, w2, ... are all new variables. The intended meaning of (RTCx,yϕ) (s, t) is
s = t ∨ (TCx,yϕ) (s, t).

Definition 3.1.2 (The logics).

• The logic cAL is semantically defined like classical first-order logic, with the
following additional clause:
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– The pair 〈M, v〉 is said to satisfy (TCx,yϕ) (s, t) if there exist a0, ..., an ∈ D
(n > 0) such that v (s) = a0, v (t) = an, and M, v[x := ai, y := ai+1] |= ϕ

for 0 ≤ i ≤ n− 1.

• The logics cALref is semantically defined like classical first-order logic, with the
following additional clause:

– The pair 〈M, v〉 is said to satisfy (RTCx,yϕ) (s, t) if v (s) = v (t), or there
exist a0, ..., an ∈ D (n > 0) such that v (s) = a0, v (s) = an, and M, v[x :=

ai, y := ai+1] |= ϕ for 0 ≤ i ≤ n− 1.

Note 3.1.3. In this chapter we do not provide a precise semantics for the corresponding
intuitionistic logics, iAL and iALref , but instead refer to the intended meaning of
the transitive closure operator. A formal semantics for these logics is explored in the
next chapter.

In the presence of equality, the two forms of the transitive closure operator
are definable in terms of each other. Without equality, there is a difference be-
tween the two forms in the ability to define quantifiers. In the language with-
out equality, the existential quantifier can be defined using the TC operator by:
∃xϕ :=

(
TCu,v

(
ϕ
{
u
x

}
∨ ϕ

{
v
x

}))
(s, t), while it cannot be defined using the RTC

operator (see [21]).

Notation. In what follows, when the claim we are stating applies to all four forms of
ancestral logic defined above (cAL, cALref , iAL and iALref ) we simply write AL.

Another option that has been investigated ([4, 76]) is to use not only a binary
operator TC (RTC), but stronger transitive closure operators, i.e., creating a system
where for each n ∈ N there is an operator TCn (RTCn) which when applied to a 2n-
ary predicate produces a new 2n-ary predicate. It is easy to see that in a language with
equality, if one allows the use of ordered pairs, then all the TCn (RTCn) operators
can be reduced to TC (RTC).

A simple compactness argument shows that the transitive closure operator is in
general not first-order definable. However, it is definable using second-order logic.
Thus, ancestral logics are intermediate between first- and second-order logics. As
mentioned in the introduction, an important indication that the expressive power of
ancestral logic captures a very significant and natural fragment of SOL is provided
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by the fact that cAL (and thus also cALref ) is equivalent in its expressive power to
several other logics between FOL and SOL that have been suggested and investigated
in the literature.

The natural numbers can be categorically characterized in AL using only equal-
ity, 0 and the successor function S (see Section 3.3). However, it was shown in [4]
that this language does not suffice for defining addition. It was further shown there
that, in contrast, the language of {=, 0, S,+} does suffice in AL for defining all recur-
sive predicates and functions. It can also be easily seen (see [102]) that the upward
Löwenheim-Skolem theorem fails for AL2, and that AL is not finitary (i.e., the com-
pactness theorem fails for it). Moreover, the sets of valid formulas of cAL and iAL in
the language of {=, 0, S,+} are not even arithmetical. Hence, there can be no formal
system, for either of these logics, which is sound and complete. Nevertheless, as we
shall demonstrate in the next section, there are very natural formal approximations
which are sound, and seem to encompass all forms of reasoning for these logics that
are used in practice.

3.2 Proof systems for AL

Like in the case of SOL, since there can be no sound and complete system for AL,
one should instead look for useful approximations. Such approximations should be:

• natural and effective,

• sound with respect to the intended semantics,

• both sound and complete with respect to some natural generalization of the
intended semantics (like Henkin semantics for SOL [102]).

Such Hilbert-style approximations were suggested already in [76, 77, 82]. Those sys-
tems are all equivalent, and every rule for the transitive closure operator that have
been suggested so far in the literature can be shown to be derivable in them. Nev-
ertheless, the use of Hilbert-type systems is impractical, since they are not suitable

2On the other hand, the downward Löwenheim-Skolem theorem holds for AL. This shows that
though more expressive than FOL, ancestral logic is still weaker than SOL. For instance, the real
numbers and the notion of well-ordering cannot be characterized (up to isomorphism) in AL (while
they can be characterized in SOL).
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for mechanization. A better proof-theoretical approach would be to explore Gentzen-
style systems for AL.

The systems defined below are extensions of Gentzen-style systems for classical
first-order logic, LK, and for intuitionistic first-order logic, LJ (see, e.g., [45, 108]).3

In what follows the letters Γ,∆ represent finite (possibly empty) multisets of formulas,
ϕ, ψ, φ arbitrary formulas, x, y, z, u, v variables, and r, s, t terms.

Definition 3.2.1. Let G be a Gentzen-style system.

• A sequent s is said to be provable from a set of sequents S in G, denoted by
S `G s, if there exists a derivation in G of s from S.

• A formula ϕ is said to be provable from a set of formulas T in G, denoted by
T `G ϕ, if there is a derivation in G of ⇒ ϕ from the set {⇒ ψ |ψ ∈ T}.

We start with ALref , for which it is slightly easier to provide an adequate Gentzen-
type approximation.

Definition 3.2.2 (The systems cALrefG and iALrefG ).

• The system cALrefG for LRTC is defined by adding to LK the axiom:

Γ⇒ ∆, (RTCx,yϕ) (s, s) (3.1)

and the following inference rules:

Γ⇒ ∆, ϕ
{
s
x
, t
y

}
Γ⇒ ∆, (RTCx,yϕ) (s, t) (3.2)

Γ⇒ ∆, (RTCx,yϕ) (s, r) Γ⇒ ∆, (RTCx,yϕ) (r, t)

Γ⇒ ∆, (RTCx,yϕ) (s, t) (3.3)

Γ, ψ (x) , ϕ (x, y)⇒ ∆, ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (RTCx,yϕ) (s, t)⇒ ∆, ψ

{
t
x

}
(3.4)

In all three rules we assume that the terms which are substituted are free for
substitution, and that no forbidden capturing occurs. In Rule (3.4) x should
not occur free in Γ and ∆, and y should not occur free in Γ,∆ and ψ.

3We take here LK and LJ to include the substitution rule, which was not taken as a logical rule
in the original systems.
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• The system iALrefG for LRTC is defined by adding to LJ the same set of axioms
and inference rules as to cALrefG , with the restriction that ∆ = ∅ in all of them.

Notation. When what we claim applies to both the classical and the intuitionistic
systems, we simply write ALrefG .

Definition 3.2.3. For languages with equality, the system AL=,ref
G is obtained from

ALrefG by the addition of standard equality axioms (see, e.g., [108]).

Rule (3.4) is a generalized induction principle which states that if t is a ϕ-
descendant of s or equal to it, then if s has some hereditary property which is passed
down from one object to another if they are ϕ-related, then t also has that property.
This is actually a generalized form of the induction rule of PA (see Prop. 3.3.2).

The system ALrefG is adequate for handling the RTC operator, in the sense that
it is sound, it give the RTC operator the intended meaning of the reflexive transitive
closure operator, and all fundamental rules concerning the RTC operator that have
been suggested in the literature (as far as we know) are derivable in it.4 The Lemma
below provides some examples.

Lemma 3.2.4. The following rules are derivable in ALrefG :5

Γ⇒ ∆, ϕ
{
s
x ,

r
y

}
Γ⇒ ∆, (RTCx,yϕ) (r, t)

Γ⇒ ∆, (RTCx,yϕ) (s, t)
(3.5)

Γ⇒ ∆, (RTCx,yϕ) (s, r) Γ⇒ ∆, ϕ
{
r
x ,

t
y

}
Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆, s = t ∨ ∃z
(

(RTCx,yϕ) (s, z) ∧ ϕ
{
z
x ,

t
y

}) (3.6)

Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆, s = t ∨ ∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆, (RTCy,xϕ) (t, s)

(RTCx,yϕ) (s, t) ,Γ⇒ ∆

(RTCy,xϕ) (t, s) ,Γ⇒ ∆
(3.7)

4Further evidence for the naturalness of ALrefG is that while it was developed independently of
the Hilbert-type systems mentioned above, it is not difficult to show that it is equivalent to them
(see [21]).

5Rules (3.6), (3.9) and (3.12) contain equality and therefore are derivable in AL=,ref
G .
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Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆,
(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t)

(RTCx,yϕ) (s, t) ,Γ⇒ ∆(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t) ,Γ⇒ ∆

(3.8)

ϕ
{
s
x

}
,Γ⇒ ∆

(RTCx,yϕ) (s, t) ,Γ⇒ s = t,∆

ϕ
{
t
y

}
,Γ⇒ ∆

(RTCx,yϕ) (s, t) ,Γ⇒ s = t,∆
(3.9)

Γ, ϕ⇒ ∆, ψ

Γ, (RTCx,yϕ) (s, t)⇒ ∆, (RTCx,yψ) (s, t)
(3.10)

(RTCx,yϕ) (s, t) ,Γ⇒ ∆

(RTCu,v (RTCx,yϕ) (u, v)) (s, t) ,Γ⇒ ∆
(3.11)

Γ, ϕ (x, y)⇒ ∆, φ (x, y) Γ, φ
{
u
x ,

v
y

}
, φ
{
v
x ,

w
y

}
⇒ ∆, φ

{
u
x ,

w
y

}
Γ, (RTCx,yϕ) (s, t)⇒ ∆, s = t, φ

{
s
x ,

t
y

}
(3.12)

Conditions:

• In all the rules we assume that the terms which are substituted are free for
substitution and that no forbidden capturing occurs.

• In (3.6) z should not occur free in Γ,∆ and ϕ
{
s
x
, t
y

}
.

• In (3.8) the conditions are the usual ones concerning the α-rule.

• In (3.9) y should not occur free in Γ,∆ or s in the left rule, and x should not
occur free in Γ,∆ or t in the right rule.

• In (3.10) x, y should not occur free in Γ,∆.

• In (3.11) u, v should not occur free in ϕ.

• In (3.12) x, y should not occur free in Γ and ∆, and u, v, w should not occur
free in Γ,∆, φ and ψ.

Proof. For a detailed proof see [21, 23]. Here we prove (3.12) as an example. For
readability we omit the context Γ,∆ from the sequents. Assume that ϕ (x, y) ⇒
φ (x, y) and φ

{
u
x
, v
y

}
, φ
{
v
x
, w
y

}
⇒ φ

{
u
x
, w
y

}
are provable. By substitution we get

φ (u, x) , φ (x, y) ⇒ φ (u, y), from which, using a cut, we get φ (u, x) , ϕ (x, y) ⇒
φ (u, y). Applying Rule (3.4) we get φ (s, x) , (RTCx,yϕ) (x, t) ⇒ φ (s, t). Using
ϕ (s, x) ⇒ φ (s, x) and s = t ⇒ s = t, applying standard first-order rules we get
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a proof of s = t ∨ ∃x (ϕ (s, x) ∧ (RCx,yϕ) (x, t)) ⇒ s = t ∨ φ (s, t). Now, using Rule
(3.6) and a cut we get a proof of (RTCx,yϕ) (s, t)⇒ s = t ∨ φ (s, t).

Next we turn to the non-reflexive TC operator. The systems for it below correct
and extend the system suggested in [4]. In that system the rules were the exact
TC-counterparts of the rules in ALrefG (but without Axiom (3.1)). However, in [22]
it was shown that there are fundamental properties of the TC operator which are
unprovable in it. Therefore, we strengthen here that system by replacing its original
induction rule by (3.15).6 In the resulting systems all the TC-counterparts of the
rules in Lemma 3.2.4 are provable.

Definition 3.2.5 (The systems cALG and iALG).

• The system cALG for LTC is defined by adding to LK the following inference
rules:

Γ⇒ ∆, ϕ
{
s
x
, t
y

}
Γ⇒ ∆, (TCx,yϕ) (s, t) (3.13)

Γ⇒ ∆, (TCx,yϕ) (s, r) Γ⇒ ∆, (TCx,yϕ) (r, t)

Γ⇒ ∆, (TCx,yϕ) (s, t) (3.14)

Γ, ϕ (x, y)⇒ ∆, φ (x, y) Γ, φ
{
u
x
, v
y

}
, φ
{
v
x
, w
y

}
⇒ ∆, φ

{
u
x
, w
y

}
Γ, (TCx,yϕ) (s, t)⇒ ∆, φ

{
s
x
, t
y

}
(3.15)

In all three rules we assume that the terms which are substituted are free for
substitution, and that no forbidden capturing occurs. In Rule (3.15) x, y should
not occur free in Γ and ∆, and u, v, w should not occur free in Γ,∆, φ and ψ.

• The system iALG for LTC is defined by adding to LJ the same set of inference
rules as to cALG, with the restriction that ∆ = ∅ in all of them.

Notation. Again, when what we claim applies to both the classical and the intuition-
istic systems, we simply write ALG.

Definition 3.2.6. For languages with equality, the system AL=
G is obtained from

ALG by the addition of standard equality axioms (see, e.g., [108]).
6A different extension of the proof system suggested in [4], which is equivalent to the systems

presented here, is described in [23].
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Note 3.2.7. Rule (3.15) is indeed a generalization of the TC-counterpart of Rule (3.4)
(which is, in turn, a generalization of PA’s induction rule). This can be easily seen
by taking φ (x, y) to be ψ (x)→ ψ

{
y
x

}
, for which φ

{
u
x
, v
y

}
, φ
{
v
x
, w
y

}
⇒ φ

{
u
x
, w
y

}
is

clearly provable using first-order rules.

Since each of the two forms of the transitive closure operator can be expressed
in terms of the other (in the presence of equality), it is interesting to explore the
connection between their proof systems.

Definition 3.2.8. Define recursively two interpretations, ′ from LRTC to LTC and ∗
from LTC to LRTC , as follows:

• ϕ′ = ϕ∗ = ϕ, for ϕ atomic formula.

• (¬ϕ)∗ = ¬ϕ∗ and (¬ϕ)′ = ¬ϕ′.

• (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗ and (ϕ ◦ ψ)′ = ϕ′ ◦ ψ′, where ◦ ∈ {∧,∨,→}.

• (Qxϕ)∗ = Qxϕ∗ and (Qxϕ)′ = Qxϕ′, where Q ∈ {∀,∃}.

• ((TCx,yA) (s, t))∗ = ∃z
(
A∗
{
s
x
, z
y

}
∧ (RTCx,yA

∗) (z, t)
)
.

• ((RTCx,yA) (s, t))′ = (TCx,yA
′) (s, t) ∨ s = t.

We use the standard abbreviations: Γ∗ for {ϕ∗|ϕ ∈ Γ} and Γ′ for {ϕ′|ϕ ∈ Γ}.

The following proposition, which shows that the above interpretations preserve prov-
ability, was established in [21, 23]:7

Proposition 3.2.9.

1. If `AL=,ref
G

Γ⇒ ∆, then `AL=
G

Γ′ ⇒ ∆′.

2. If `AL=
G

Γ⇒ ∆, then `AL=,ref
G

Γ∗ ⇒ ∆∗.

Next we present another strong connection between these translations:

7Actually, AL=
G and AL=,ref

G are modifications of the systems for the TC operator and the RTC
operator which are given in [23] (denoted there by TCG and RTCG, respectively). The systems
presented here have a further generalization of the induction rule. However, the same translation
given there preserves provability between AL=

G and AL=,ref
G as well.
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Proposition 3.2.10. The following holds:

1. `AL=,ref
G

(ϕ′)∗ ⇒ ϕ and `AL=,ref
G

ϕ⇒ (ϕ′)∗.

2. `AL=
G

(ϕ∗)′ ⇒ ϕ and `AL=
G
ϕ⇒ (ϕ∗)′.

Proof. The proofs of both 1. and 2. are carried out by induction on ϕ. If ϕ does not
contain the TC or RTC operator, then (ϕ′)∗ and (ϕ∗)

′
are equal to ϕ, hence provably

equivalent to it.
For 1. assume that ϕ := (RTCx,yA) (s, t). Thus, (ϕ′)∗ is the formula

∃z
(

(A′)∗
{
s
x
, z
y

}
∧RTCx,y (A′)∗ (z, t)

)
∨ s = t. By the induction hypothesis we

have `ALref
G

(A′)∗ ⇒ A, thus by (3.10) the sequent (RTCx,y (A′)∗) (s, t) ⇒
(RTCx,yA) (s, t) is also provable in AL=,ref

G . It is easy to check that the sequent
∃z
(

(A′)∗
{
s
x
, z
y

}
∧RTCx,y (A′)∗ (z, t)

)
∨ s = t ⇒ (RTCx,y (A′)∗) (s, t) is provable in

AL=,ref
G (using (3.5) and (3.1)). A cut on the last two sequents results in a proof

of ∃z
(

(A′)∗
{
s
x
, z
y

}
∧RTCx,y (A′)∗ (z, t)

)
∨ s = t ⇒ (RTCx,yA) (s, t). For the con-

verse, denote ∃z
(

(A′)∗
{
u
x
, z
y

}
∧RTCx,y (A′)∗ (z, w)

)
∨ s = t by ψ (notice that (ϕ′)∗

is ψ
{
s
u
, t
w

}
). It is easy to see that ψ

{
s
u
, x
w

}
, (A′)∗ ⇒ ψ

{
s
u
, y
w

}
is provable in AL=,ref

G .
Applying Rule (3.4) results in a proof of the sequent ψ

{
s
u
, s
w

}
, (RTCx,y (A′)∗) (s, t)⇒

ψ
{
s
u
, t
w

}
. The sequent⇒ ψ

{
s
u
, s
w

}
is clearly provable using the equality axiom, thus,

a cut entails a proof of the sequent (RTCx,y (A′)∗) (s, t) ⇒ (ϕ′)∗. As before, by the
induction hypothesis we have that `AL=,ref

G
A ⇒ (A′)∗, so by (3.10) the sequent

(RTCx,yA) (s, t) ⇒ (RTCx,y (A′)∗) (s, t) is also provable in AL=,ref
G , and by one cut

we obtain a proof of (RTCx,yA) (s, t)⇒ (ϕ′)∗.
For 2. assume that ϕ := (TCx,yA) (s, t). Hence, (ϕ∗)′ is the formula

∃z
(

(A∗)′
{
s
x
, z
y

}
∧
(
TCx,y (A∗)′ (z, t) ∨ z = t

))
. It is easy to check that the se-

quent ∃z
(

(A∗)′
{
s
x
, z
y

}
∧
(
TCx,y (A∗)′ (z, t) ∨ z = t

))
⇒
(
TCx,y (A∗)′

)
(s, t) is prov-

able in AL=
G. By the induction hypothesis we have `AL=

G
(A∗)′ ⇒ A, so by

the TC-counterpart of (3.10) the sequent
(
TCx,y (A∗)′

)
(s, t) ⇒ (TCx,yA) (s, t)

is also provable in AL=
G. Applying a cut results in a proof of the sequent

∃z
(

(A∗)′
{
s
x
, z
y

}
∧
(
TCx,y (A∗)′ (z, t) ∨ z = t

))
⇒ (TCx,yA) (s, t). For the con-

verse, notice that the TC-counterpart of Rule (3.6) entails the provability of(
TCx,y (A∗)′

)
(s, t)⇒ (A∗)′

{
s
x
, t
y

}
∨∃z

(
(A∗)′

{
s
x
, z
y

}
∧
(
TCx,y (A∗)′

)
(z, t)

)
. Clearly,

the sequent (A∗)′
{
s
x
, t
y

}
⇒ ∃z

(
(A∗)′

{
s
x
, z
y

}
∧ z = t

)
is provable in AL=

G, and again,



3.3. Arithmetics in AL 29

using the induction hypothesis on A together with the TC-counterpart of (3.10) we
get that (TCx,yA) (s, t) ⇒

(
TCx,y (A∗)′

)
(s, t) is provable in AL=

G. By cuts we get

`AL=
G

(TCx,yA) (s, t)⇒ ∃z
(

(A∗)′
{
s
x
, z
y

}
∧
(
TCx,y (A∗)′ (z, t) ∨ z = t

))
.

Corollary 3.2.11. AL=
G and AL=,ref

G are equivalent in the following sense:

1. `AL=,ref
G

Γ⇒ ∆ iff `AL=
G

Γ′ ⇒ ∆′.

2. `AL=
G

Γ⇒ ∆ iff `AL=,ref
G

Γ∗ ⇒ ∆∗.

Proof. The left-to-right implications are simply Prop. 3.2.9. For the converse, con-
sider `AL=

G
Γ
′ ⇒ ∆

′ . By Prop. 3.2.9 we get that `AL=,ref
G

(Γ′)∗ ⇒ (∆′)∗. Since by
Prop. 3.2.10 we have that `AL=,ref

G
(ϕ′)∗ ⇒ ϕ and `AL=,ref

G
ϕ⇒ (ϕ′)∗ for any formula

ϕ in LRTC , using cuts we get that `AL=,ref
G

Γ⇒ ∆. The proof of 2. is similar.

3.3 Arithmetics in AL

Definition 3.3.1. The system ALrefA is obtained by augmenting AL=,ref
G with the

following axioms for successor and addition, and the axiom characterizing the natural
numbers:

s (x) = 0⇒
s (x) = s (y)⇒ x = y

⇒ x+ 0 = x

⇒ x+ s (y) = s (x+ y)

⇒ (RTCw,u (s(w) = u)) (0, x)

Proposition 3.3.2. In ALrefA , Rule (3.4) entails all instances of the induction rule
in PAG (Gentzen-style system for Peano arithmetics, see e.g. [108]).

Proof. This can be achieved by taking ϕ to be s (x) = y in Rule (3.4) (see [4] for
further details).
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We next show that for the standard language of PA the system ALrefA is equivalent
to PAG, in the sense that there is a provability preserving translation algorithm
between them.8 The followings were proven in [21, 23] using Godel’s β-function.9

Theorem 3.3.3. There is a β-translation which transforms a formula of LRTC into
a formula in the language of PA, such that the following holds:10

• `ALref
A

ϕ⇒ ϕβ and `ALref
A

ϕβ ⇒ ϕ.

• `ALref
A

Γ⇒ ∆ iff `PAG
Γβ ⇒ ∆β.

In particular, for Γ,∆ in the language of PA, `ALref
A

Γ⇒ ∆ iff `PAG
Γ⇒ ∆.

A key proof-theoretical method which arises from Gentzen’s consistency proof for
PAG (see [46, 108]) is the assignment of ordinals to proof systems. In Gentzen’s
method, each system is assigned the least ordinal number needed for its constructive
consistency proof. This provides a measure for a complexity of a system which is
useful for comparing different proof systems. The constructive consistency proof of
PAG entails that the ordinal number of PAG is at most ε0, and another theorem of
Gentzen [47] shows that it is exactly ε0.

Corollary 3.3.4. The ordinal number of the system ALrefA is ε0.

Note 3.3.5. Due to the provability-preserving translation between AL=,ref
G and AL=

G

given in Prop. 3.2.11, it can easily be deduced that the ordinal number of ALA (the
system obtained from AL=

G by the addition of the axioms for successor and addition,
and the axiom characterizing the natural numbers) is ε0 as well.

3.4 Henkin-Style Completeness

In this section we introduce a Henkin-style semantics for LRTC (see, e.g. [54, 102])
and prove the completeness of ALrefG with respect to it. In what follows, for the
sake of readability, we assume that LRTC is a language based on a signature without
function symbols and without equality.11

8Moreover, if L is a language that expands the language of PA, and S and T are two systems
expanding ALrefA and PAG, respectively, to the language L by the same set of additional first-order
axioms, then, using practically the same method we can prove that S and T are equivalent.

9The idea was taken from [105].
10We use the standard abbreviations: Γβ for

{
ϕβ |ϕ ∈ Γ

}
.

11The completeness result which follows can easily be extended in the standard way to languages
that do include them.
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First we recall the concepts of frames and Henkin structures. A frame is a rela-
tional structure together with some subset of the powerset of its domain (called its
set of admissible subsets).

Definition 3.4.1 (Frames). Let σ be a relational signature with constants. A σ-
frame M is a triple 〈D, I,D′〉, where D is a non-empty domain, I is an interpretation
function on σ in D, and D′ ⊆ P (D). An assignment v in M is defined as in the
standard semantics.

A σ-Henkin structure is a frame whose set of admissible subsets satisfies some
closure conditions.

Definition 3.4.2 (Henkin structures). A σ-Henkin structure is a σ-frame M that is
closed under parametric definability, i.e., for each formula ϕ of L and assignment v
in M :

{a ∈ D |M, v [x := a] |= ϕ} ∈ D′

In case D′ = P (D), the σ-Henkin structure is called a standard structure.

Notice that in finite structures every subset of the domain is parametrically de-
finable, hence non-standard σ-Henkin structures are necessarily infinite.

Definition 3.4.3. Let LRTC be the language based on the signature σ. LRTC formulas
are interpreted in σ-frames as in standard structures, except for the following clause:

• M, v |= (RTCx,yϕ) (s, t) iff for every A ∈ D′, if v (s) ∈ A and for every a, b ∈ D:
(a ∈ A ∧M, v [x := a, y := b] |= ϕ)→ b ∈ A, then v (t) ∈ A.

The next proposition shows that the above definition is equivalent to Def. 3.1.2 when
dealing with standard structures.

Proposition 3.4.4. LetM be a standard structure and v an assignment inM . Then,
the followings are equivalent:

1. v (s) = v (t) or there exist a0, ..., an ∈ D (n > 0) such that v (s) = a0, v (t) = an,
and M, v[x := ai, y := ai+1] |= ϕ for 0 ≤ i ≤ n− 1.

2. for every A ⊆ D, if for every a, b ∈ D: (a ∈ A ∧M, v [x := a, y := b] |= ϕ) →
b ∈ A and v (s) ∈ A, then v (t) ∈ A.
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Proof. Suppose (1). Let A ⊆ D be a set that is closed under ϕ, and v an assignment
such that v (s) = a0 ∈ A . If v (s) = v (t) we are done, otherwise, by induction on
the sequence a0, ..., an we prove that v (t) = an ∈ A. For the converse, assume by
contradiction that (1) does not hold. Take A to be that set which includes v (s) as
well as all an ∈ D such that there exist a0, ..., an−1 ∈ D (n > 0) where v (s) = a0,
and M, v[x := ai, y := ai+1] |= ϕ for 0 ≤ i ≤ n− 1. By assumption, v (t) /∈ A, which
contradictes (2), because A is obviously ϕ-closed.

Definition 3.4.5. Let T ∪ {ϕ} be a set of formulas in a language based on the
signature σ. We say that T |=H ϕ if every σ-Henkin model of T is a model of ϕ.

It is straightforward to verify the following:

Theorem 3.4.6 (Soundness Theorem). Let T ∪ {ϕ} be a set of sentences in LRTC.
Then, T `ALref

G
ϕ implies T |=H ϕ.

The main result of this chapter is Theorem 3.4.7 below, which we shall prove using
several lemmas and definitions.

Theorem 3.4.7 (Completeness Theorem). Let T ∪{ϕ} be a set of sentences in LRTC.
Then, T |=H ϕ implies T `ALref

G
ϕ.

We prove the theorem in the standard method by showing that if T 0ALref
G

ϕ, then
T 2H ϕ. First, we extend the language LRTC to a language L′RTC by adding to it
countably many new constant symbols, c1, c2, ..., and countably many new monadic
predicates, P1, P2, .... It is easy to see that T 0ALref

G
ϕ in the new language as well.

Definition 3.4.8. We say that a set of L′RTC sentences Γ contains Henkin witnesses
if the followings hold:

1. if ∃xϕ ∈ Γ, then ϕ
{
c
x

}
∈ Γ for some constant c.

2. if ¬ (RTCx,yϕ) (s, t) ∈ Γ, then P (s)∧∀x, y (P (x) ∧ ϕ (x, y)→ P (y))∧¬P (t) ∈
Γ for some monadic predicate P .

3. if ϕ is a formula of L′RTC such that . Fv (ϕ) = {x}, then ∀x (P (x)↔ ϕ) ∈ Γ

for some monadic predicate P .
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Lemma 3.4.9. Let P be a monadic predicate and ψ a formula of L′RTC . Then,
P (s) ,∀x, y (P (x) ∧ ψ (x, y)→ P (y)) ,¬P (t) `ALref

G
¬ (RTCx,yψ) (s, t).

Proof. Follows immediately from Rule (3.4) (taking ϕ (x, y) := ψ (x, y) and ψ (x) :=

P (x)) using cuts.

Lemma 3.4.10. Let T be a set of sentences in L′RTC such that T 0ALref
G

ϕ, and let θ
be a sentence of the form ∀x (P (x)↔ ψ), where P is a fresh monadic predicate (i.e.
does not occur in T ∪ {ϕ, ψ}). Then, T, θ 0ALref

G
ϕ.

Proof. Suppose by contradiction that T,∀x (P (x)↔ ψ) `ALref
G

ϕ, where P is a fresh
monadic predicate. Therefore, there is a proof of ϕ from T ∪ {∀x (P (x)↔ ψ)} in
ALrefG . First we rename all bound variables in the proof (apart from x in the formula
∀x (P (x)↔ ψ)) with new variables (not occurring in the proof or in ∀x (P (x)↔ ψ)).
Now, we replace all the occurrences of formulas of the form P (t) in the proof by ψ

{
t
x

}
.

Then, every occurrence of ∀x (P (x)↔ ψ) in the proof becomes an occurrence of
∀x (ψ ↔ ψ), which of course is provable in ALrefG . We now show that the replacement
procedure indeed produces a proof of ϕ from T in ALrefG . It is straightforward to show
that if the replacement is done on an axiom, then the result is still an axiom of ALrefG .
It is also easy to verify that all the inference rules apply equally to the formulas after
the replacement. Also notice that since P does not occur in T ∪{ϕ}, the replacement
procedure applied to a formula in T∪{ϕ} results in the same formula. This shows that
there is a proof of ϕ from T in ALrefG , i.e., T `ALref

G
ϕ, which is a contradiction.

Lemma 3.4.11 (Lindenbaum Lemma). There exists an extension of T to a set of
sentences T ′ in the language L′RTC such that:

1. T ′ is a maximal theory in L′RTC such that T ′ 0ALref
G

ϕ.

2. T ′ contains Henkin witnesses.

Proof. First, fix two enumerations: one of all sentences of L′RTC : ψ1, ψ2, ...; and one
of all the formulas of L′RTC with one free variable x: θ1, θ2, .... We define a sequence
of theories T0, T1, ... inductively in the following way: T0 = T , and for i > 0 Ti is
constructed from Ti−1 as follows:

1. If i = 2n− 1 for some n ∈ N, then:
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(a) If Ti−1 ∪ {ψn} `ALref
G

ϕ, then Ti = Ti−1.

(b) If Ti−1 ∪ {ψn} 6`ALref
G

ϕ, then:

i. If ψn is not of the form ∃xψ or ¬ (RTCx,yψ) (s, t): Ti = Ti−1 ∪ {ψn}.
ii. If ψn = ∃xψ, then Ti = Ti−1∪

{
ψn, ψ

{ cj
x

}}
, where cj is a fresh variable

not in Ti−1.

iii. If ψn = ¬ (RTCx,yψ) (s, t), then:
Ti = Ti−1 ∪ {ψn, Pj (s) ∧ ∀x, y (Pj (x) ∧ ψ (x, y)→ Pj (y)) ∧ ¬Pj (t)},
where Pj is a fresh monadic predicate not in Ti−1.

2. If i = 2n for some n ∈ N, then Ti = Ti−1 ∪ {∀x (Pj (x)↔ θn)}, where Pj is a
fresh monadic predicate not in Ti−1.

We show that for every i ∈ N, Ti 0ALref
G

ϕ. First notice that Lemma 3.4.10
entails that if T2n−1 6`ALref

G
ϕ, then T2n 6`ALref

G
ϕ. In cases where i = 2n − 1:

Cases (a) and (bi) are trivial, and Case (bii) is provable just as in the standard com-
pleteness proof for FOL. We prove here Case (biii). Assume by contradiction that
Ti−1,¬ (RTCx,yψ) (s, t) , Pj (s) ∧ ∀x, y (Pj (x) ∧ ψ (x, y)→ Pj (y)) ∧ ¬Pj (t) `ALref

G
ϕ.

Since Pj (s) ∧ ∀x, y (Pj (x) ∧ ψ (x, y)→ Pj (y)) ∧ ¬Pj (t) `ALref
G
¬ (RTCx,yψ) (s, t)

by Lemma 3.4.9, we get that Ti−1, Pj (s) ∧ ∀x, y (Pj (x) ∧ ψ (x, y)→ Pj (y)) ∧
¬Pj (t) `ALref

G
ϕ. Now, Pj is a monadic predicate which does not appear in Ti−1∪{ϕ}.

Therefore it is straightforward to verify that by replacing all occurrences of formulas
of the form Pj (r) in the proof with (RTCx,yψ) (s, r) we get a proof in ALrefG of ϕ
from Ti−1∪{(RTCx,yψ) (s, s) , ∀x, y ((RTCx,yψ) (s, x) ∧ ψ (x, y)→ (RTCx,yψ) (s, y)) ,

¬ (RTCx,yψ) (s, t)}. Now, (RTCx,yψ) (s, s) is an axiom of ALrefG , and using Rule (3.5)
we can deduce that `ALref

G
∀x, y ((RTCx,yψ) (s, x) ∧ ψ (x, y)→ (RTCx,yψ) (s, y)).

Hence, we get that Ti−1∪{¬ (RTCx,yψ) (s, t)} `ALref
G

ϕ, which contradicts the original
assumption that Ti−1 ∪ {ψi} 6`ALref

G
ϕ. Therefore, Ti 0ALref

G
ϕ.

We now define T ′ =
⋃∞
i=0 Ti. The construction of T ′ entails that it contains Henkin

witnesses.

Definition 3.4.12. Define a σ-frame M by:

• D = {c | c is a constant}

• D′ = {{c |P (c) ∈ T ′} |P is a monadic predicate}
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• 〈c1, ..., cn〉 ∈ I (P ) iff P (c1, ..., cn) ∈ T ′

• I (c) = c

Notice that D′ = {I (P ) |P is a monadic predicate}.
It is standard to verify the following lemma:

Lemma 3.4.13. Let ψ be a formula in L′RTC . The following holds:

• M, v |= ψ iff M |= ψ
{
v(x1)
x1

, ..., v(xn)
xn

}
, where Fv (ψ) = {x1, ..., xn}.

• T ′ |=H ∀xψ iff T ′ |=H ψ
{
c
x

}
for every constant c.

Lemma 3.4.14. M is a σ-Henkin structure.

Proof. This is immediate since T ′ contains Henkin witnesses of the third type
in Definition 3.4.8, i.e., a monadic predicate was introduced for each “paramet-
rically” definable subset (using the new constant symbols instead of the pa-
rameters). To see this, let ψ be a formula such that Fv (ψ) = {x1, ..., xn},
and let v be an assignment in M . Then, {a ∈ D |M, v [x1 := a] |= ψ} ={
a ∈ D |M, v [x1 := a] |= ψ

{
v(x2)
x2

, ..., v(xn)
xn

}}
. Now in T ′ we have a monadic predi-

cate which forms a Henkin witness for ψ
{
v(x2)
x2

, ..., v(xn)
xn

}
, denote it by Pk (x1). Thus,{

a ∈ D |M, v [x1 := a] |= ψ
{
v(x2)
x2

, ..., v(xn)
xn

}}
= I (Pk) ∈ D′.

Proposition 3.4.15. For every sentence θ in L′RTC: M |= θ iff ϕ ∈ T ′.

Proof. By induction on θ. The base case follows immediately from the definition of
M . For the connectives and quantifiers the proof is similar to the standard proof for
FOL (using Henkin witnesses for existential formulas). We next prove the case for
θ = (RTCx,yψ) (s, t).
(⇒) : Assume M |= (RTCx,yψ) (s, t). Hence, for every monadic predicate P ,
if I (s) ∈ I (P ) and for every a, b ∈ D:(a ∈ I (P ) ∧M, v [x := a, y := b] |= ψ) →
b ∈ I (P ), then I (t) ∈ I (P ). Using the induction hypothesis and the base case
we get that for any monadic predicate P , if P (s) ∈ T ′ and for any two con-
stants a, b, if P (a) ∈ T ′ and ψ (a, b) ∈ T ′ then P (b) ∈ T ′, then P (t) ∈ T ′.
From this we deduce (using Lemma 3.4.13) that for any monadic predicate P , if
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P (s) ∈ T ′ and ∀x, y (P (x) ∧ ψ (x, y)→ P (y)) ∈ T ′, then P (t) ∈ T ′. Assume by
contradiction that (RTCx,yψ) (s, t) /∈ T ′. Then, by the maximality of T ′, we get
that ¬ (RTCx,yψ) (s, t) ∈ T ′. Therefore, T ′ contains a Henkin witness of the type
P (s)∧∀x, y (P (x) ∧ ψ (x, y)→ P (y))∧¬P (t) for some monadic predicate P . From
this we get that P (s) ∈ T ′, ∀x, y (P (x) ∧ ψ (x, y)→ P (y)) ∈ T ′ and ¬P (t) ∈ T ′.
But this contradicts the consistency of T ′, since we showed that for any monadic
predicate P , if P (s) ∈ T ′ and ∀x, y (P (x) ∧ ψ (x, y)→ P (y)) ∈ T ′, then P (t) ∈ T ′.
Therefore, we conclude that (RTCx,yψ) (s, t) ∈ T ′.
(⇐) : Assume M 2 (RTCx,yψ) (s, t). So, M |= ¬ (RTCx,yψ) (s, t) and there ex-
ists a monadic predicate P such that I (s) ∈ I (P ), I (t) /∈ I (P ) and for every
a, b ∈ D: (a ∈ I (P ) ∧M, v [x := a, y := b] |= ψ) → b ∈ I (P ). By the induction hy-
pothesis and the base case we get that there exists a monadic predicate P such that
P (s) ∈ T ′, P (t) /∈ T ′, and for any two constants a, b, if P (a) ∈ T ′ and ψ (a, b) ∈ T ′

then P (b) ∈ T ′. Therefore, by the maximality of T ′, P (s) ∈ T ′, ¬P (t) ∈ T ′ and
∀x, y (P (x) ∧ ψ (x, y)→ P (y)) ∈ T ′ (the latter holds since assuming otherwise leads
to a contradiction using a Henkin witness for an existential formulas). This entails,
by Lemma 3.4.9, T ′ `ALref

G
¬ (RTCx,yψ) (s, t). Thus, if (RTCx,yψ) (s, t) ∈ T ′. we get

a contradiction to the consistency of T ′, therefore (RTCx,yψ) (s, t) /∈ T ′.

Since T ⊆ T ′ and ϕ /∈ T ′, we get that M |= T while M 2 ϕ. Hence, T 6|=H ϕ,
which finally proves Theorem 3.4.7.

Note 3.4.16. Using a similar method to that described in this section it is straightfor-
ward to provide a Henkin-style semantics for LTC and to prove that ALG is complete
with respect to it.



Chapter 4

Constructive (Intuitionistic)
Ancestral Logic

In this chapter we present a constructive view of ancestral logic.1 We introduce a
formal system for iAL, iALS, which is a refinement of iALG and a natural extension
of the formal system for intuitionistic FOL given in [31] (which is here denoted by
iFOLS). The system iFOLS can be viewed and used as a dependently typed ab-
stract programming language, particularly suitable for correct-by-construction style
of programming [31]. This is because iFOLS has the key feature that proofs of spec-
ifications in its proof system carry their computational content in realizers. Hence,
proving a formula in iFOLS results in a realizer that can be thought of as holding the
computational element of a program, and so one can extract programs from proofs
that iFOLS specifications are solvable. Now iALS enjoys these features too, but has
greater expressive and proof-theoretic power. Accordingly, iALS can serve as a much
better framework for specifying, developing, and reasoning about programs. The
computational power that iALS has beyond that of iFOLS is given by its realizer
for the transitive closure operator, which has the property that each of its particular
instances corresponds to some recursive program.

The chapter is organized as follows: Section 4.1 reviews the formal system and
realizability semantics for iFOL, as presented in [31]. In Section 4.2 they are extended
to a formal system and a realizability semantics for iAL. We prove that the system for
iAL, iALS, is strongly sound with respect to this semantics by showing that provable

1In this chapter we focus on the non-reflexive TC operator.

37
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formulas are uniformly realizable. In Section 4.3 applications of iAL in computer
science are explored. In particular, we show that iALS subsumes Kleene Algebras
with tests [66] and thus serves as a natural programming logic for proving properties
of program schemes.

This chapter is mainly based on [24, 25].

4.1 Formal System for iFOL

4.1.1 Realizability semantics for iFOL

This section reviews the semantics of evidence for pure2 intuitionistic first-order logic
(iFOL) along the lines of [31], which is simply a compact type theoretic restatement
of the BHK semantics.

Let L be a first-order language consisting of predicates P ni
i (with arity ni), together

with a designated symbol D. A structure M for L assigns to D a constructive type,
[D]M (the domain of discourse),3 and assigns to every formula A over L a type of
objects denoted [A]M , called the evidence for A with respect to M .
Convention. In what follows, when there is only one structure involved, the subscript
M is sometimes omitted from [A]M .

Below is how evidence is defined for the various kinds of first-order propositional
functions. The definition also implicitly provides a formal syntax of first-order for-
mulas.

Definition 4.1.1 (iFOL formulas and their evidence).

• atomic predicates P ni
i are interpreted as functions from [D] ni

M into P, the
type of propositions, and for the atomic proposition P ni

i (x1, ..., xni
), the basic

2For simplicity we focus on pure languages, i.e., equality, constants, and functions are not built-in
primitives of the language. However, the systems presented in this chapter can easily be extended
to include them.

3As a first approximation one may think of types as constructive sets [12]. In [2] it was shown
how to interpret constructive sets as types in Intuitionistic Type Theory (ITT ) [78, 79, 87], and this
approach was implemented in MetaPRL for Constructive Type Theory (CTT ) [57]. Intuitionists
might refer to species instead. We do not analyze the structure of the domain further and do
not examine the equality relation on the type when dealing with the pure first-order theory, as is
standard practice.
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evidence must be supplied, say by objects pi. In the uniform treatment, all of
these objects are considered to be equal, and are denoted by the unstructured
atomic element ?.4 Thus if an atomic proposition is known by atomic evidence,
the evidence is the single element ? of the unit type, {?}.5

• conjunction [A ∧B] = [[A]]× [B], the Cartesian product.

• existential [∃x.B(x)] = x : [D]M × [B(x)], the dependent product.6

• implication [A→ B] = [A] 7→ [B], the function space.7

• universal [∀x.B(x)] = x : [D]M 7→ [[B(x)]], the dependent function space.8

• disjunction [A ∨B] = [A] + [B], disjoint union.

• false [False] = ∅, the void type.

Negation is defined by ¬A := A→ False.
The following proposition, which is proven classically in [31], shows that the above

evidence semantics can be read classically, and it corresponds to Tarski’s semantics
for FOL and AL.

Proposition 4.1.2. A formula A is satisfied in a structure M if and only if there is
evidence in [A]M .

4.1.2 The Proof System iFOLS

We next present the proof system iFOLS for iFOL adopting the presentation style
from [31], where the computational content is made explicit using the evidence se-
mantics. The rules of the system are presented in the “top-down style” (also called

4Officially this can be done using the set type {sq(pi)|Pni
i (x1, ..., xni

)}, where sq(pi) “squashes”
the evidence pi to ? [26].

5It might seem that we should introduce atomic evidence terms that might depend on parameters,
say p(x, y) as the atomic evidence in the atomic proposition P (x, y), but this is unnecessary and
uniformity would eliminate any significance to those terms. In CTT and ITT , the evidence for
atomic propositions such as equality and ordering is simply an unstructured term such as ?.

6This type is sometimes denoted by Σx:DB(x).
7This function space is interpreted type theoretically and is assumed to consist of effectively

computable deterministic functions.
8This type is sometimes denoted by Πx:DB(x).
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refinement style), in which the goal comes first and the rule name with parameters
generates subgoals. Thus the sequent style trees are grown with the root at the top.
This top-down, goal oriented style is common to all of the proof assistants which work
in the highly successful tactic mechanism of the Edinburgh LCF proof assistant [49],
and it is also compatible with the style for rules and proofs used in the Nuprl proof
assistant [30].

The rules are presented in the style of McCarthy’s abstract syntax [80]. For each
rule a name is provided that is the outer operator of a proof expression with slots
to be filled in as the proof is developed. Each sequent in the rules is build so that
the left-hand side contains the context, and the right-hand side contains a type and
its evidence term. For the right-hand sides the notation “type by term” is used (as
opposed to “term : type”). The construction rules (often called introduction rules)
apply to terms on the right-hand side of the sequent and introduce the canonical
proof terms. For each of these construction rules, the constructor needs subterms
which build the component pieces of evidence. For each connective and quantifier
we also have rules for their occurrence on the left of the sequent. These are the
rules for decomposing a connective or a quantifier. They tell us how to use the
evidence that was built with the corresponding construction rules, and the formula
being decomposed is always named by a label in the list of hypotheses, so there is a
variable associated with each rule application. (For a more detailed explanation of
the syntax used in the proof rules see [31].)

Definition 4.1.3. The proof system iFOLS is given in Figure 4.1.

Note 4.1.4. The meta variable d is used to denote objects in the domain of discourse
D. In the classical evidence semantics, we assume that D is non-empty by postulating
the existence of some d0.

Note 4.1.5. The system iFOLS is based on the classical proof system for intuitionistic
FOL, with the addition of the realizers. If the realizers are omitted from the rules,
we get a natural deduction version of LJ .

9This notation shows that ap(f ; sla) is substituted for v in g(v). In the CTT logic we
stipulate in the rule that v = ap(f ; sla) in B.

10In the CTT logic, we use equality to stipulate that v = ap(f ; d) in B(v) just before the hypothesis
v : B(d).
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Figure 4.1: The proof system iFOLS

And Construction Or Construction
H ` A ∧B by pair(slota; slotb) H ` A ∨B by inl(slotl)

H ` A by slota H ` A by slotl
H ` B by slotb

H ` A ∨B by inr(slotr)

Implication Construction H ` B by slotr
H ` A→ B by λ(x.slotb(x)) new x
H,x : A,H ′ ` B by slotb(x) Exists Construction

H ` ∃x.B(x) by pair(d; slotb(d))

Hypothesis H ` d ∈ D by obj(d)

H, d : D,H ′ ` d ∈ D by obj(d) H ` B(d) by slotb(d)

H,x : ϕ,H ′ ` ϕ by hyp(x) All Construction
H ` ∀x.B(x) by λ(x.slotb(x))

H,x : D,H ′ ` B(x) by slotb(x)

And Decomposition
H, x : A ∧B,H ′ ` G by spread(x; l, r.slotg(l, r)) new l, r
H, l : A, r : B,H ′ ` G by slotg(l, r)

Implication Decomposition
H, f : A→ B,H ′ ` Gby apseq (f ; slotg; v.slg [ap(f ;slota)/v]) new v9

H ` A by slota
H, v : B,H ′ ` G by slotg(v)

Or Decomposition
H, y : A ∨B,H ′ ` G by decide(y; l.slotleft(l); r.slotright(r))

H, l : A,H ′ ` G by slotleft(l)

H, r : B,H ′ ` G by slotright(r)

Exists Decomposition
H,x : ∃y.B(y), H ′ ` G by spread(x; d, r.slotg(d, r)) new d, r

H, d : D, r : B(d), H ′ ` G by slotg(d, r)

All Decomposition
H, f : ∀x.B(x), H ′ ` G by apseq(f ; d; v.slotg [ap(f ;d)/v])

H ` d ∈ D by obj(d)

H, v : B(d), H ′ ` G by slotg(v)10

False Decomposition
H, f : False,H ′ ` G by any(f)
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Turning to the semantics of the system, in [31] the notion of uniform validity was
introduced. A proposition is said to be uniformly valid if it has polymorphic evidence
that does not depend on the specific evidence which is assigned to atomic proposi-
tions in a given structure. Intuitively, the notion of uniform validity is concerned
not with the statements that are true in every structure, but with the statements
that are true in the same way in every structure. Uniformity provides an effective
tool for semantics, because one can establish uniform validity by exhibiting a single
polymorphic object. The notion of uniformity was then used in [31] to provide a
constructive completeness theorem (for its intended semantics) of pure intuitionistic
first-order logic.

4.1.3 Constructive (Intuitionistic) Metatheory

Formal semantics of the intuitionistic logics we present is based on extensional con-
structive type theories such as Intuitionistic Type Theory (ITT ) [78, 79, 87] or Con-
structive Type Theory (CTT ) [29, 30]. Critical to constructive type theory is the
underlying computation system, thus below we survey its key properties. This is es-
sentially the untyped programming language underlying the type theory, and thus
underlying iFOLS and iALS (which is introduced in the sequel).

The data and the programs of the computation system are given by closed terms.
To explain what we mean by a closed term we need to examine the structure of terms
further. The precise definition of terms provides the syntax of the programming
language. All terms have an outer operator which determines whether a term is
canonical or non-canonical. Table 4.2 below contains the operators that will be
used here: the canonical ones, and the corresponding non-canonical ones associated
with the canonical. For instance, we use the term pair(a; b) (or more succinctly
< a, b >) for And construction rule, and for the corresponding decomposition rule
we use spread(x; l, r.t(l, r)) where the binding variables l, r have a scope that is the
subterm t(l, r). The reason to use spread instead of the more familiar operators for
decomposing a pair p such as first(p) and second(p) (or p.1 and p.2) is that we need
to indicate how the subformulas of a conjunction will be named in the hypothesis
list.11 The canonical terms correspond to the values of the computation system, the
data. The non-canonical expressions evaluate to canonical ones under the evaluation

11See [31] for a more detailed description of the operators.
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Figure 4.2: The Computational Operators

Canonical Non-canonical

pair spread

inl, inr decide

λ ap, apseq

[ ] (list constructor) concat

?

rules. They correspond in a sense to programs applied to data. This terminology is
used by Martin-Löf in relating his type theory to programming languages [78].

Terms having a canonical operator are called values and those with non-canonical
operators are called operations. In building terms we use bound variables, e.g., the
notation for functions has the form λ(x.t(x)), where the subterm x is a bound variable
with binding operator λ. If the subterm t(x) has an occurrence of the variable x , the
expression t(x) is neither an operator, nor a value; it is an open term. Open terms
have a special status in the computation system because of the ability to substitute
terms for variables within open terms. Typically we think of substituting values for
variables, but there are reasons that we must also consider substituting variables for
variables.

A computation is defined as a sequence of rewritings or reductions of terms to
other terms according to very explicit rules. When all its slots are filled in, each rule
form of the proof systems iFOLS and iALS becomes a term in an applied lambda
calculus, and there are computation rules that define how to reduce these terms.
These rules are given in detail in several papers about Computational Type Theory
and Intuitionistic Type Theory, e.g., [30, 78]. The computation systems of iFOLS
and iALS have the property that all reductions will terminate in values which are
said to be the value of the expression. Canonical terms, such as λ(x.x), reduce to
themselves. A non-canonical term such as ap(λ(x.x); y) reduces in one step to y.

It is important to notice that all of the programs and data of these logics are
untyped. They are also said to be polymorphically typed because many terms, such
as λ(x.x), have the type A→ A for any proposition A of the logic.
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4.2 Formal System for iAL

Notation. In this chapter, for readability, we use a more succinct presentation of the
TC operator than that used in the previous chapter. Thus, the notation Ax,y will
be used to specify that we treat the formula A as defining a binary relation with
respect to variables x and y (x and y distinct variables), and other free variables that
may occur in A are taken as parameters. The standard abbreviation A+

x,y is used for
TCx,yA (the full notation used in the previous chapter). We also use Ax,y (u, v) as
an abbreviation of A

{
u
x
, v
y

}
. If there is no chance of confusion, the subscript x, y is

sometimes omitted.

4.2.1 Realizability Semantics for iAL

To provide evidence for the transitive closure operator, generic and polymorphic con-
structs are used, in the spirit of using polymorphic functions, pairs, and tags. To know
A+(x, y), a list of elements of D is constructed, say [d, ..., d′]12, and a list of evidence
terms [r, ..., r′] such that r is evidence for A(x, d) and r′ is evidence for A(d′, y) and
the intermediate terms form an evidence chain. That is, if d+ is the list of elements
and r+ is the list of evidence terms, we have that the first element of d+ is d1 and first
of r+ is r1, where r1 ∈ [A(x, d1)], the next element of d+ is d2 and the next element
of r+ is r2, evidence for A(d1, d2), and so forth. It is important to notice that the
concept of lists is subsumed into the realizers and does not appear in the logic itself.13

Definition 4.2.1 (iAL formulas and their evidence). iAL formulas are defined as
iFOL formulas with the addition of the following clauses:

• If A is a formula, x, y distinct variables, and u, v variables, then A+
x,y (u, v) is a

formula.

• The evidence type for A+
x,y (u, v) consists of lists of the form

[〈d0, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, dn+1, rn+1〉]
12Notice that the notation [ ] is overloaded and used for lists (and list constructors), as well as for

evidence types.
13In CTT used in [29], the evidence type for the transitive closure operator can be defined using

intersection type, the type
⋂
x:AB(x).
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where n ≥ 0, d0, d1, ..., dn+1 : [D]M , d0 = u, dn+1 = v, and ri ∈ [Ax,y(di−1, di)]

for 1 ≤ i ≤ n+ 1.

Notice that the realizers for transitive closure formulas are all polymorphic and
thus independent of realizers for particular atomic formulas.

It is also interesting to note the following: according to a standard mathematical
definition of the transitive closure operator, R+ (x, y) can be taken as the formula
∃n
(
N (n) ∧R(n) (x, y)

)
, where R(0) = R and R(n+1) = R(n) ◦R. This of course is not

a legal formula in our language, but this is intuitively what we mean, if we had the
natural numbers, N , at our disposal. The realizer for such “formula” will be of the
form: 〈n, 〈isnat (n) , 〈x, d1, ..., dn, y, 〈r1, ..., rn+1〉〉〉〉, where isnat (n) realizes N (n).
The realizer of the transitive closure correlates nicely to this realizer. A realizer of
the form 〈n, 〈isnat (n) , 〈x, d1, ..., dn, y, 〈r1, ..., rn+1〉〉〉〉 can be easily converted into the
form [〈x, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, y, rn+1〉] simply by rearranging the data. For the
converse, the data can also be rearranged, but some additional data is required: n,
which is the length of the list minus 1; and the realizer for it being a natural number,
which is available as the length of a list is always a natural number.14

4.2.2 The Proof System iALS

We present a proof system for iAL which extends iFOLS by adding construction and
decomposition rules for the transitive closure operator. The rules for the transitive
closure are the same as in iALG (written in the same form as the rules of iFOLS),
with the addition of the realizers. We use here the standard canonical operator [ ]

for list constructor, and the non-canonical operator associated with it, concat, for
concatenating lists.

Definition 4.2.2. The proof system iALS is defined by adding to iFOLS the follow-
ing rules for the transitive closure operator.

• TC Base

H, x : D, y : D,H ′ ` A+(x, y) by [〈x, y, slot〉]
H, x : D, y : D,H ′ ` A(x, y) by slot

14By interpreting the naturals as lists on the unit type, the definition of the transitive closure
operator by means of the natural numbers is an instance of our definition using lists.
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• TC Trans

H, x : D, y : D,H ′ ` A+(x, y) by concat (slotl, slotr)

H, x : D, z : D,H ′ ` A+(x, z) by slotl

H, y : D, z : D,H ′ ` A+(z, y) by slotr

• TC Ind

H, x : D, y : D, r+ : A+(x, y), H ′ ` B(x, y) by tcind (r+;u, v, w, b1, b2.tr(u, v, w, b1, b2);

u, v, r.st(u, v, r))

H, u : D, v : D,w : D, b1 : B(u, v), b2 : B(v, w), H ′ ` B(u,w) by tr(u, v, w, b1, b2)

H, u : D, v : D, r : A(u, v), H ′ ` B(u, v) by st(u, v, r)

where u, v, w are fresh variables.

Notes:

• Rule TC Base states that the list consisting of the singe triple 〈x, y, r〉, where
r realizes A(x, y), is a realizer for the transitive closure A+(x, y).

• The crucial point about Rule TC Trans is that it does not nest lists of triples for
the same goal. Instead, the lists are “flattened out” as proofs are constructed.
This entails that proofs of transitive closure formulas have a distinguished real-
izer. Furthermore, it provides an adequate mechanism for creating a flat chain
of evidence needed for the transitive closure induction rule (TC Ind). We have
found this to be the minimal, most natural structure needed for handling a
TC-chain.

• The realizer for Rule TC Ind computes on the list r+ and is recursively defined
as follows:
tcind(r+;u, v, w, b1, b2.tr(u, v, w, b1, b2);u, v, r.st(u, v, r)) computes to:

if base(r+) then

st(r+.11, r
+.12, r

+.13)

else

tr(r+.11, r
+.12, r

+.22, tcind
(
c(r+);u, v, w, b1, b2.tr(u, v, w, b1, b2);u, v, r.st(u, v, r)

)
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The operator base(r+) is true when r+ is simply the singleton triple. We use
the notation r+.ui to denote the ith elements of the triple (i ∈ {1, 2, 3}) in the
uth place in the list. The operator c(r+) returns the list r+ without its first
element.

We next give some examples of fundamental, intuitionistically valid statements con-
cerning the TC operator that are provable in iALS. They are counterparts of state-
ments proven in iALG. For simplicity of presentation we use the “forgetful” abbre-
viation T ` A (where T is a set of formulas), omitting all the declarations and the
realizers.

Proposition 4.2.3. The following are provable in iALS:

A (x, z) , A+ (z, y) ` A+ (x, y) A+ (x, z) , A (z, y) ` A+ (x, y) (4.1)

A+ (x, y) ` A (x, y) ∨ ∃z
(
A (x, z) ∧ A+ (z, y)

)
(4.2)

A+ (x, y) ` A (x, y) ∨ ∃z
(
A+ (x, z) ∧ A (z, y)

)
A+ (x, y) ` ∃zA (x, z) A (x, y) ` ∃zA (z, y) (4.3)(

A+
)+

(x, y) ` A+ (x, y) (4.4)

` ∃xA↔
(
A
{u
x

}
∨ A

{v
x

})+
u,v

(u, v) (where u, v are fresh) (4.5)

Proof. The proofs of the the claims are similar to their proofs in iALG. We
provide here the proof of (4.5) as an example.15 Denote by ϕ (u, v) the for-
mula A (u,−→y ) ∨ A (v,−→y ). The right-to-left implication follows from (4.3) since
∃z (A (u,−→y ) ∨ A (z,−→y )) ` ∃xA (x,−→y ) can be easily proven in iFOLS, and (4.3)
entails that ϕ+ (u, v) ` ∃zϕ (u, z). For the left-to-right implication it suffices to prove
d : D,A (d,−→y ) ` ϕ+ (u, v). Clearly, in iFOLS, d : D,A (d,−→y ) ` ϕ (d, v) is provable,
from which we can deduce by TC Base d : D,A (d,−→y ) ` ϕ+ (d, v). Since we also have
d : D,A (d,−→y ) ` ϕ (u, d), by (4.1), we obtain d : D,A (d,−→y ) ` ϕ+ (u, v).

It is important to notice that there is a strong connection between our choice
for the realizer of the transitive closure and the standard realizers for iFOL. For
example, (4.5) entails that the existential quantifier is definable in iALS. It is

15Notice that (4.5) is the defining formula of the existential quantifier in terms of the transitive
closure operator, introduced in Section 3.1.
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interesting to see how the realizer for the defining formula correlates to the re-
alizer for an existential formula. For instance, the standard realizer for ∃xP (x)

is a pair 〈d, ?〉, since P is an atomic relation. The realizer for the defining for-
mula, (P (u) ∨ P (v))+ (u, v), is of the form [〈d0, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, dn+1, rn+1〉]
where d0 = u, dn+1 = v, and each ri is a realizer for P (di) ∨ P (di+1). Now, suppose
we have a realizer of the form 〈d, ?〉 of ∃xP (x). The realizer for the defining formula
in iALS is [〈u, d, inr (?)〉]. For the converse, suppose we have a realizer of the form
[〈d0, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, dn+1, rn+1〉] where d0 = u, dn+1 = v. Then we can
create a realizer for ∃xP (x) in the following way: if r1 is inl (?) return 〈u, ?〉, else
return 〈d1, ?〉.

4.2.3 Soundness for iALS

Next we prove that iALS is sound by showing that every provable formula is realizable,
and even uniformly realizable. We do so by providing a semantics to sequents and
then proceed by induction on the structure of the proofs. It is important to note that
the realizers are all polymorphic since they do not contain any propositions or types
as sub-components, and thus serve to provide evidence for any formulas built from
any atomic propositions.

Given a type [D]M (empty or not) as the domain of discourse, atomic propositional
functions from [D]M to propositions, P, and the type theoretic meaning of the logical
operators and the transitive closure operator, an iALS sequent can be interpreted over
dependent types as follows: a sequent x1 : T1, x2 : T2(x1), ..., xn : Tn(x1, ..., xn−1) `
G(x1, ..., xn) defines an effectively computable function from an n-tuple of elements
of the dependent product of the types in the hypothesis list to the type of the goal,
G(x1, ..., xn).

Theorem 4.2.4 (Realizability Theorem). Every provable formula of iALS is uni-
formly realizable.

Proof. The proof is carried out by induction on the structure of proofs in iALS.
The atomic (axiomatic) subgoals are of the form x1 : T1, x2 : T2(x1), ..., xn :

Tn(x1, ..., xn−1) ` Tj(x1, ..., xn), which is clearly realizable. Also, the proof rules for
iALS show how a realizer for the goal sequent can straightforwardly be constructed
given realizers for the subgoals.
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Since realizability semantics is the definition of constructive truth, this theorem
allows us to also say that every provable formula is true in every constructive structure.

Theorem 4.2.5 (Soundness Theorem). Every provable formula of iALS is intuition-
istically valid.

4.3 Applications of iAL

4.3.1 Kleene Algebra

Kleene algebra (KA) [64] arises in many areas of computer science, such as automata
theory, the design and analysis of algorithms, dynamic logic, and program semantics.
There are many interesting models of KA, yet the theory of relational Kleene algebra
(RKA) is of practical interest, particularly for programming language semantics and
verification [66, 67].

Definition 4.3.1. A Kleene algebra (KA) is a structure (K,+, ·,∗ , 0, 1), such that
(K,+, ·, 0, 1) forms an idempotent semi-ring which satisfies the following axioms:16

(1) 1 + xx∗ ≤ x∗ (2) 1 + x∗x ≤ x∗

(3) xp ≤ x→ xp∗ ≤ x (4) px ≤ x→ p∗x ≤ x

Elements of K, which are denoted by p, q, r, x, ..., are called programs. The upper
semi-lattice structure induces a natural partial order on any idempotent semi-ring:
x ≤ y ↔ x+ y = y.

Definition 4.3.2. For an arbitrary set U , the set P (U×U) of all binary relations on
U forms a Kleene algebra R(U) with the interpretations ∪ for +, composition ◦ for
·, empty relation for 0, identity relation for 1 and reflexive transitive closure for ∗. A
Kleene algebra is relational (RKA) if it is a subalgebra of R(U) for some U .

Due to the prominence of relational models in programming language semantics
and verification, it is of high interest to characterize them axiomatically or other-
wise. We next show that iALS with equality (iAL=

S ) forms an adequate proof system

16We omit ·, writing xy for x · y.
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for RKA, as RKA can be embedded in iAL=
S in such a way that any valid RKA

expression is translated into a provable iAL=
S formula.

Definition 4.3.3. The system iAL=
S , for iAL with equality, is obtained from iALS

by adding to it the following:

• Reflexivity Axiom
H ` x = x by Eq

• Paramodulation Rule
H, x : D, y : D, r : A,H ′ ` A′ by r
H, x : D, y : D,H ′ ` x = y by slot

where A′ is obtained from A by replacing free occurrences of x in A with y,
with the standard restrictions.

Note 4.3.4. The axioms for symmetry and transitivity of the equality relation are
derivable in iAL=

S . Moreover, it can be easily proven that all of the atomic relations
respect equality.

Let L be a first-order language with equality, consisting of binary predicates,
P1, P2, .... The translation from an RKA expression E into an iAL=

S formula is
defined as follows. We use the notation Arep(x,y) to denote the formula obtained from
A by replacing the free occurrences of x in A with y (applying the α-rule if necessary).

Definition 4.3.5. For an RKA expression E define |E| inductively by:

• For atomic p assign a distinct predicate Pi and define: |p| := Pi (x, y)

• |0| := False

• |1| := x = y

• |E1 + E2| := |E1| ∨ |E2|

• |E1 · E2| := ∃z
(
|E1|rep(y,z) ∧ |E2|rep(x,z)

)
, where z is a fresh variable.

• |E∗| := x = y ∨ |E|+

• |E1 = E2| := (|E1| → |E2|) ∧ (|E2| → |E1|)
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Note that |p ≤ q| is the formula: ((|p| ∨ |q|)→ |q|) ∧ (|q| → (|p| ∨ |q|)), which is
provably equivalent to |p| → |q|. For convenience, in what follows we shall use this
as the translation of p ≤ q.

Theorem 4.3.6. For E a valid expression of RKA, |E| is provable in iAL=
S .

Proof. The only rule in RKA is the transitivity of equality, which translates to the
transitivity of ↔17. This, in turn, is clearly provable in iFOLS. It is easy to see that
the translation of all the axioms for the idempotent semiring are provable using the
proof rules of iFOLS. It remains to show that the translation of axioms (1)–(4) in
Def. 4.3.1 are provable in iAL=

S .

(1): The translation of the axiom is: [x = y ∨ ∃z.P (x, z) ∧ (z = y ∨ P+ (z, y))] →
(x = y ∨ P+ (x, y)). If x = y, by Or construction (using inl) we get a proof
of x = y ∨ P+ (x, y). Otherwise, assume ∃z (P (x, z) ∧ (z = y ∨ P+ (z, y))). If
z = y, then by the Paramodulation rule we get P (x, y), from which, by TC
Base, we get P+ (x, y). If P+ (z, y), then by (4.1) in Prop. 4.2.3 we get P+ (x, y).
Applying Or construction (using inr) results in a proof of x = y ∨ P+ (x, y).

(2): Symmetric to the proof of (1).

(3): We need to show that the following rule is derivable in iAL=
S :

H, x : D, y : D,H ′ ` ∃z
(
P1 (x, z) ∧

(
z = y ∨ P+

2 (z, y)
))
→ P1 (x, y)

H, x : D, y : D,H ′ ` ∃z (P1 (x, z) ∧ P2 (z, y))→ P1 (x, y)

Assume ∃z
(
P1 (x, z) ∧

(
z = y ∨ P+

2 (z, y)
))
. If z = y and P1 (x, z),

then P1 (x, y) by the Paramodulation rule. Otherwise, suppose
∃z
(
P1 (x, z) ∧ P+

2 (z, y)
)
. Assuming ∃z (xP1z ∧ zP2y) → xP1y we can de-

rive P2 (z, y) ` P1 (x, z) → P1 (x, y) using iFOLS rules. Since clearly
P1 (x, u) → P1 (x, v) , P1 (x, v) → P1 (x,w) ` P1 (x, u) → P1 (x,w), Rule
TC Ind, we obtain P+

2 (z, y) ` P1 (x, z) → P1 (x, y). This entails that
∃z
(
xP1z ∧ zP+

2 y
)
` xP1y using iFOLS rules. Hence, in both cases P1 (x, y) is

derivable from the assumptions.

(4): Symmetric to the proof of (3) .

17A↔ B is taken as an abbreviation of (A→ B) ∧ (B → A).
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4.3.2 Kleene Algebra with Tests

Many of the applications of KA are enhanced using Kleene algebra with tests (KAT )
[66], which is an equational system for program verification that combines KA with
Boolean algebra. The presence of tests allows KAT to model basic programming
language constructs such as conditionals, while loops, verification conditions, and
partial correctness assertions.

Definition 4.3.7. A Kleene algebra with tests (KAT ) is a KA with an embedded
Boolean subalgebra, i.e., a two-sorted structure (K,B,+, ·,∗ ,− , 0, 1) such that:

1. (K,+, ·,∗ , 0, 1) is a KA,

2. (B,+, ·,− , 0, 1) is a Boolean algebra,

3. B ⊆ K.

Elements of B, denoted by b, c, ..., are called tests, and the Boolean complementation
operator − is defined only on them.
Relational Kleene algebra with test (RKAT ) is RKA with test, where tests are simply
subsets of the identity relation on the domain U . The Boolean complementation
operator on tests gives the set-theoretic complement in the identity relation.

Let L be a first-order language with equality, consisting of binary predicates,
P1, P2, .., B1, B2, .... We expand the translation from a RKA expression into an iAL=

S

formula, to a translation of a RKAT expression into an iAL=
S formula in the following

way.

Definition 4.3.8. Let E be a RKAT expression. the formula |E| is defined induc-
tively as in Def. 4.3.5, with the following additional clause:

• For each atomic test b assign a distinct predicate symbol Bi and define:

|b| :=Bi (x, y) ∧ x = y∣∣b̄∣∣ :=¬Bi (x, y) ∧ x = y

The translation of each test may be viewed as a decidable unary predicate. This is
because from any formula of the form Bi(x, y)∧ x = y one can deduce Bi (x, x) using
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the Paramodulation rule. Tests in constructive systems are the properties which are
decidable, thus the formal system must be extended to include instances of the Law
of Excluded Middle for each test (and only for them). This correlates to the fact that
in Kleene algebra with tests the Boolean complementation operator is defined only
on tests.

Definition 4.3.9. The system iALT=
S is obtained by adding to iAL=

S axioms of the
form Bi (x, y) ∨ ¬Bi (x, y) for each predicate Bi.

Theorem 4.3.10. For E a valid expression of RKAT , |E| is iALT=
S provable.

Proof. Clearly all the translations of the axioms of RKA remain provable in iALT=
S .

It remains to show that the translated axioms for the Boolean algebra are provable
in iALT=

S . The translated axioms of associativity, commutativity and distributivity
of + and · are provable as in the case of RKA. We next show that the translations
of the remaining axioms are provable.

b · b̄ = 0: The translation is ∃z (B (x, z) ∧ x = z ∧ ¬B (z, y) ∧ z = y) ↔ False. The
right-to-left implication is trivial. For the converse direction, notice that the for-
mula ∃z (B (x, z) ∧ x = z ∧ ¬B (z, y) ∧ z = y) easily entails B (x, x) ∧ ¬B (x, x),
from which False is provable (since ¬B (x, x) is an abbreviation of B (x, x)→
False).

b+ b̄ = 1: The translation is (B (x, y) ∧ x = y) ∨ (¬B (x, y) ∧ x = y) ↔ x = y, which is
provably equivalent to (x = y ∧ (B (x, y) ∨ ¬B (x, y)))→ x = y. Thus, the left-to-
right implication is clearly provable. As B (x, y) ∨ ¬B (x, y) is an axiom of the
system iALT=

S , the right-to-left implication is also provable.

b+ (b · c) = b: The translation of the axiom is the formula:
[(B1 (x, y) ∧ x = y) ∨ ∃z.B1 (x, z) ∧ x = z ∧B2 (z, y) ∧ z = y] ↔ B1 (x, y) ∧ x = y.
The right-to-left implication is immediate. For the converse direction, notice
that using the formula ∃z (B1 (x, z) ∧ x = z ∧B2 (z, y) ∧ z = y) we can prove
B1 (x, y)∧B2 (x, y) and ∃z (x = z ∧ z = y), from which both B1 (x, y) and x = y

are provable.

b · (b+ c) = b: The translation of the axiom is the formula:
∃z (B1 (x, z) ∧ x = z ∧ ((B1 (z, y) ∧ z = y) ∨ (B2 (z, y) ∧ z = y)))↔ B1 (x, y)∧ x = y.
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The left-to-right implication is proven in a similar way to the proof of the
previous axiom. For the converse, using the formula B1 (x, y) ∧ x = y we can
deduce ∃z (B1 (x, z) ∧ x = z ∧B1 (z, y) ∧ z = y), and from it the left-hand side
is derivable.

RKAT is especially interesting because it closely models our intuition about pro-
grams. For instance, the if and while program constructs are encoded in RKAT as
in propositional Dynamic Logic:

if b then p else q := bp+ b̄q

while bdo p := (bp)∗ b̄

By the above translation, the construct if b then p else q can be expressed by
a formula equivalent to (B (x, x) ∧ P1 (x, y)) ∨ (¬B (x, x) ∧ P2 (x, y)), and the
construct while bdo p is expressible in iALT=

S by a formula equivalent to(
(B (x, x) ∧ P (x, y))+ ∨ x = y

)
∧ ¬B (y, y).

Another connection to programming derives from the relation between iALT=
S and

the theory of flowchart schemes.18 This theory has a rich history going back to Ianov
[60] and Manna [74]. A central question in the theory of flowchart schemes is scheme
equivalence. In [74] examples of equivalence proofs done by transformations on the
graphs of the schemes are presented. In [66] KAT was used to recast much of the
theory of flowchart schemes into an algebraic framework by assigning to each flowchart
scheme a KAT expression. Thus, the question of scheme equivalence was replaced by
the question of equality between KAT expressions. The translation algorithm given
in this section shows that the problem of scheme equivalence amounts to the question
of equivalence in iALT=

S between two formulas.
There are a number of benefits to reasoning about programs in iALT=

S as opposed
to RKAT . First, while RKAT can be embedded into iALT=

S , the language of iALT=
S

is far richer than that of RKAT . Hence, there are many meaningful statements about
programs that cannot be formulated in RKAT , but can be captured in iALT=

S (e.g.,
“there is a state to which each run gets to (on any input)”). Another key feature of
iALT=

S is that proofs of specifications in iALT=
S carry their computational content

in the realizer. Thus, a proof in iALT=
S results in a realizer which can be thought of

18A flowchart scheme is a vertex-labeled graph that represents an uninterpreted program.
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as a program. Even simple assertions, such as A+(x, y)→ ∃zA(z, y), have interesting
realizers that depend on the realizer of the TC Ind rule (tcind), and thus correspond
to recursive programs. Moreover, since iALT=

S is an effective, constructive proof
system, it is more amenable to implementation.





Chapter 5

The Predicative Framework

In this chapter we pursue the predicative approach described in Section 2.2 and
present a framework which is suitable for the formalization of predicative mathemat-
ics. This system is based on the approach to predicative set theory suggested in [9],
which in turn uses the framework for formalizing set theories developed in [5, 8]. One
advantage of this framework is that it is close in spirit and formulation to ZF (and
similar systems), since it is purely set-theoretical. Another main advantage of the
framework is that its language is type-free, and it includes nothing that is not used
also in ordinary mathematical discourse. In particular, it reflects real mathematical
practice in making an extensive use of defined abstract set terms of the form {x |ϕ}.1

A crucial property of the framework is that unlike in the dynamic approach used in
current mathematical texts, here the introduction of such set terms does not depend
on previously proving corresponding existence theorems. Instead, they are statically
defined in a precise, purely syntactic way using a mechanism called safety relations.
The use of this mechanism also adds computational content to our system (as will be
demonstrated in the sequel).

The formal framework we present has several variants. It can be first-order based,
or its language can be a TC-language. Moreover, in each of these options the under-
lying logic can be classical or intuitionistic.

1This is a major advantage over the usual formalizations of set theories, which employ language(s)
that are rather poor and remote from those used in everyday mathematics. These formalizations are
usually done in languages in which variables are the only terms which are directly provided, thus
making them almost useless from a computational point of view.

57
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It should be noted that while our formal systems are predicative, their use is
not confined to predicative models. Thus, possible models for the systems include
concrete, predicatively accepted universes, but also inconcrete ones. However, the
meaning of a term in their languages does not really depend on the choice of model
(whether predicatively acceptable or not), because every valid term of the languages
has the same interpretation in all transitive models of the system which contains the
values of its parameters and interprets all the constants in the same way.

The chapter is organized as follows: We start by reviewing the safety relation
mechanism and its motivations in Section 5.1. In Section 5.2 we describe the general
predicative framework: the family of languages and their corresponding systems. Pos-
sible models for the formal systems are explored in Section 5.3. Then, in Section 5.4,
the basic languages are extended in a static way in order to introduce fundamental
set-theoretical concepts. This includes the introduction of classes into the framework,
as well as describing the way standard set-theoretical notions (like relations and func-
tions) are dealt with within the framework. In Section 5.5 the natural numbers are
incorporated into our framework.

This chapter is mainly based on [10, 11].

5.1 Safety Relations

One of the foundational questions in set theory is which formulas should be excluded
from defining sets by an abstract term of the form {x | ϕ} in order to avoid the
paradoxes of naive set theory. More generally, the question is: what formulas can be
taken as defining a construction of a set from given objects (including other sets)?
Various set theories provide different answers to this question. These answers are
usually guided by semantic intuitions (like the limitation of size doctrine [43, 51]),
thus rendering them useless for the purpose of mechanization. When interested in
a mechanizable or computational system, one has to translate the various semantic
principles into syntactic (and in our opinion, less ad-hoc) constraints on the logical
form of formulas. For this the concept of safety relations introduced in [5, 6, 8] was
developed. The concept combines ideas from three seemingly very different sources:
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Set theory: Gödel’s classical work [48] on the constructible universe L is best known
for its use in consistency and independence proofs. However, it is of course of
great interest also for the study of the general notion of constructions with
sets. Thus, for characterizing the “constructible sets” Gödel identified a set
of operations on sets (which we may call “computable”), that can be used for
“effectively” constructing new sets from given ones. For example, binary union
and intersection are “effective”, while the power set operation is not. Gödel has
provided a finite list of basic operations, from which all other “effective” (for his
purposes) constructions can be obtained through compositions. Another very
important idea introduced in [48] is absoluteness — a key property (see [69])
of formulas which are used for defining “constructible sets”. Roughly, a formula
is absolute if its truth value in a transitive class M , for some assignment v of
objects from M to its free variables, depends only on v, but not on M (i.e., the
truth value is the same in every transitive class M , in which v is legal).

Formal arithmetic: Absoluteness is not a decidable property. Therefore, a certain
set ∆0 of absolute formulas is extensively used in set theory as a syntactically
defined approximation. Now a similar set ∆0 of formulas (also called in [106]
“bounded formulas” or “Σ0-formulas”), which has exactly the same definition
(except that ∈ is replaced by <) is used in formal arithmetic in order to char-
acterize the decidable and the semi-decidable (r.e.) relations on the natural
numbers. This fact hints at an intimate connection (investigated in [7]) be-
tween absoluteness/constructibility and decidability/computability.

Relational database theory: The importance of computations with sets to this
area is obvious: to provide an answer to a query in a relational database, a
computation should be made in which the input is a finite set of finite sets of
tuples (the “tables” of the database), and the output should also be a finite set
of tuples. In other words: the computation is done with (finite) sets. Accord-
ingly, for effective computations with finite relations some finite set of basic
operations has been identified in database theory, and this basic set defines (via
composition) what is called there “the relational algebra” [1, 112]. Interestingly,
there is a lot of similarity between the list of operations used in the relational
algebra and Gödel’s list of basic operations mentioned above. However, much
more important is again the strong connection (observed in [6, 7, 8]) between
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the notion of absoluteness used in set theory, and the notion of domain inde-
pendence used in database theory, and practically serving as its counterpart of
the notion of computability.
A query in a database can be construed as a formula ϕ in the language of set
theory, augmented with constants for the relations in the database. The answer
to such a query is the set of all n-tuples that satisfy ϕ, given the interpretations
provided by the database for the extra constants (here n is the number of free
variables in ϕ; if n = 0, then the answer to the query is either “yes” or “no”).
A domain-independent (d.i.) query is a query the answer to which depends
only on the information included in the database, and on the objects which are
mentioned in the query. Only such queries are considered meaningful. More-
over: the answer to such queries is always finite and computable. Therefore,
practical database query languages (like SQL) are designed so that only d.i.
queries can be formulated in them, and each such query language is based on
some syntactic criteria that ensure this property. In order to give these criteria
a concise logical characterization, and in order to unify the notions of abso-
luteness and domain-independence, the formula property of d.i. was turned in
[6, 7] into a safety relation � between a formula ϕ and finite subsets of Fv (ϕ).
The intuitive meaning of “ϕ(x1, ..., xn, y1, ..., yk) � {x1, ..., xn}” in databases is:
“ϕ(x1, ..., xn, d1, ..., dk) is d.i. for all values d1, ..., dk”. In particular, ϕ � ∅ if ϕ
is absolute in the sense of axiomatic set theory.

In view of the connections noted above between “absolute” and “decidable” and be-
tween “domain-independent” and “computable”, in the realm of sets we shall intu-
itively take the meaning of “ϕ(x1, ..., xn, y1, ..., yk) � {x1, ..., xn}” in case n > 0 to
be: “The collection {〈x1, ..., xn〉 | ϕ} is an acceptable set for all acceptable values of
y1, ..., yk, and it can be constructed from these values”. In case n = 0 we take the
meaning of “ϕ(y1, ..., yk) � ∅” to be: “ϕ describes a definite property”. In particular, if
ϕ(y1, ..., yk) � ∅, then the collection {〈y1, ..., yk〉 ∈ z | ϕ} should be an acceptable set
for any acceptable value of z.2 This intuitive meaning will be used in our predicative

2In other words, we take “ϕ � ∅” as saying that ϕ defines a “definite” property in Zermelo’s sense
(see Introduction), and practically identify “definite” and “absolute”.
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formalization of ZF Comprehension Axiom in the next section. The differences be-
tween the strength of formal systems will intuitively be due to different interpretations
of the vague notions of “acceptable” and “can be constructed”.

5.2 The Languages and the Systems

Notation. To avoid confusion, we use different parentheses for collections in our formal
language and in the meta-language. The parentheses {◦ ◦} are used in our formal
languages, while for a collection in the meta-language we use { }. In the meta-
language we use uppercase letters X, Y, Z, ... for collections; Φ,Θ for finite sets of
variables; and x, y, z, ... for variables in the formal language.

5.2.1 Languages

Given a set of constants C, we first introduce the language LCRST , which is a first-
order language with equality having a variable binding term operator (vbto, see [32]).
The vbto of the language is of the form {◦ x | ϕ ◦}. Note that in first-order languages
with vbto the notion of a term being free for substitution generalizes the usual one,
since in such a language a variable can be bound within a term. As usual, the
generalization amounts to avoiding the capture of free variables within the scope of
a binding operator.

Convention. In what follows, in case C = ∅ we omit C from our notations for the
language and for the systems. For example, we write LRST instead of L∅RST .

Definition 5.2.1. Let C be a finite set of constants. The language LCRST and the
associated safety relation � are simultaneously defined as follows:

• Terms:

– Every variable is a term.

– Every c ∈ C is a term (taken to be a constant).

– If x is a variable and ϕ is a formula such that ϕ � {x}, then {◦ x | ϕ ◦} is a
term (for which Fv ({◦ x | ϕ ◦}) = Fv (ϕ)− {x}).
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• Formulas:

– If t and s are terms, then t = s and t ∈ s are atomic formulas.

– If ϕ and ψ are formulas and x is a variable, then ¬ϕ, (ϕ ∧ ψ) , (ϕ ∨ ψ), and
∃xϕ are formulas.

• The safety relation � is defined as follows:

– If ϕ is an atomic formula, then ϕ � ∅.

– If t is a term such that x /∈ Fv (t), and ϕ ∈ {x ∈ x, x ∈ t, x = t, t = x},
then ϕ � {x}.

– If ϕ � ∅, then ¬ϕ � ∅.

– If ϕ � Θ and ψ � Θ, then ϕ ∨ ψ � Θ.

– If ϕ � Θ, ψ � Φ and either Φ ∩ Fv (ϕ) = ∅ or Θ ∩ Fv (ψ) = ∅, then
ϕ ∧ ψ � Θ ∪ Φ.

– If ϕ � Θ and y ∈ Θ, then ∃yϕ � Θ− {y}.

Since in our opinion TC-languages provide a better framework for formalizing pred-
icative mathematics, we next introduce an extension of LCRST to a TC-language (see
Chapter 3).3

Definition 5.2.2. The language LCRST+TC is obtained from LCRST by the addition of
the following clauses to its definition:

• If ϕ is a formula, x, y are distinct variables, and s, t are terms, then
(TCx,yϕ) (s, t) is a formula.

• If ϕ � Φ and {x, y} ∩ Φ 6= ∅, then (TCx,yϕ) (x, y) � Φ.

Notation. In what follows, when what we say applies to both LCRST and LCRST+TC, we
simply write LC .

3For convenience we take here the TC operator, but the RTC operator could be taken instead,
since LCRST includes equality (see Chapter 3).
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Note 5.2.3. Though the official languages do not include ∀ and →, we take
∀x1...∀xn (ϕ→ ψ) as an abbreviation for ¬∃x1...∃xn (ϕ ∧ ¬ψ). This can be done
if we assume classical logic. If intuitionistic logic is assumed, we must include ∀ and
→ in our formal language and add to the definition of the safety relation � a clause
stating: if ϕ � {x1, ..., xn} and ψ � ∅, then ∀x1, ..., xn (ϕ→ ψ) � ∅.

The next Lemma is straightforward to verify.

Lemma 5.2.4. � has the following properties:

• If ϕ � Θ and Φ ⊆ Θ, then ϕ � Φ.

• If ϕ � Θ, x ∈ Θ, and y /∈ Fv (ϕ), then ϕ
{
y
x

}
� Θ− {x} ∪ {y}.

• If ϕ � Θ and x ∈ Θ , then ϕ
{
t
x

}
� Θ− {x}.

• If ϕ � Θ and x /∈ Θ , then ϕ
{
t
x

}
� Θ− Fv (t).

• If ϕ � {x1, ..., xn} and ψ � ∅, then ∀x1, ..., xn (ϕ→ ψ) � ∅.

• If x /∈ Fv (t) and ϕ � ∅, then ∀x (x ∈ t→ ϕ) � ∅ and ∃x (x ∈ t ∧ ϕ) � ∅.
Hence, ϕ � ∅ for every ∆0 formula in LZF .

5.2.2 Logics

We use four different types of logics in our framework. The basic two for LCRST are
classical first-order logic cFOL (the logic which underlies ZF and related systems),
and intuitionistic first-order logic iFOL (the logic which underlies constructive coun-
terparts of ZF , like CZF and IZF ). For LCRST+TC ancestral logic is used, again in
two versions: the classical one cAL, and the intuitionistic one iAL.

5.2.3 Axioms and Systems

Next, the axioms of the formal systems are presented, followed by a discussion that
explains the rationale behind them.

Notation 5.2.5. We take the usual definition of ⊆ in terms of ∈. Note that according
to this definition t ⊆ s � ∅. We also denote by {◦t◦} the term {◦ x | x = t ◦}, by s ∪ t the
term {◦ x | x ∈ s ∨ x ∈ t ◦}, and by ∅ the term {◦ x | x ∈ x ◦} (see Lemma 5.4.2 in the
sequel).
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Definition 5.2.6 (The systems).

1. The system RST cFOLC is the classical first-order with vbto system in LCRST which
is based on the following set of axioms:4

• Extensionality: ∀z (z ∈ x↔ z ∈ y)→ x = y

• Comprehension Schema: ∀x (x ∈ {◦x | ϕ ◦} ↔ ϕ)

• Restricted ∈-induction Schema:
(
∀x
(
∀y
(
y ∈ x→ ϕ

{
y
x

})
→ ϕ

))
→ ∀xϕ,

where ϕ � ∅.

If C includes the constant HF , then the following axioms are added:

• ∅ ∈ HF

• ∀x∀y (x ∈ HF ∧ y ∈ HF → x ∪ {◦y◦} ∈ HF )

• ∀y (∅ ∈ y ∧ ∀v, w ∈ y.v ∪ {◦w◦} ∈ y → HF ⊆ y)

2. The system RST cALC is the classical ancestral logic with vbto system in LCRST+TC
which is based on the same set of axioms as RST cFOLC .

3. The system RST iFOLC is the intuitionistic first-order with vbto system in LCRST
which is based on the same set of axioms as RST cFOLC , with the additional
axiom:

• Restricted Excluded Middle: ϕ ∨ ¬ϕ, where ϕ � ∅.

4. The system RST iALC is the intuitionistic ancestral logic with vbto system in
LCRST+TC which is based on the same set of axioms as RST iFOLC .

Notation. When what we say applies to both the classical and the intuitionistic ver-
sions of the corresponding systems we simply write RST FOLC or RSTALC . In case it
applies to all four systems we write RSTC .

An important feature of RSTC is that its first two axioms directly lead (and are
equivalent) to the following set-theoretical reduction rules:

4In [11] the system RST cFOLC was denoted by RSTC , and in case HF ∈ C it was denoted by
RSTCHF . In [8] the system RST cFOL was denoted by RST . Also, RST cFOL can be shown to be
equivalent to the system obtained from Gandy’s basic set theory [44] by adding to it the restricted
∈-induction schema, and to the system called BST0 in [99] (see [7]).
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• [(β)] `RSTC t ∈ {◦x | ϕ ◦} ↔ ϕ
{
t
x

}
(provided t is free for x in ϕ).

• [(η)] `RSTC {◦ x | x ∈ t ◦} = t (provided {◦ x | x ∈ t ◦} is a legal term, i.e. x 6∈ Fv(t)).

Discussion:

As noted in Section 2.2, to impose the first principle of the predicative approach there
should be some restrictions on the Comprehension Axiom. In [7] it was suggested
that the predicatively acceptable instances of the axiom are those which determine
the collections they define in an absolute way, independently of any “surrounding
universe”. In other words: in the context of set theory, a formula ϕ is predicative
(with respect to x) if the collection {x | ϕ (x, y1, ..., yn)} is completely and uniquely
determined by the identity of the parameters y1, ..., yn, and the identity of other
objects referred to in the formula (all of which should be well-determined beforehand).
Note that ϕ is predicative for ∅ iff it is absolute in the usual sense of set theory. In
order to translate this idea into an exact, syntactic definition the safety relation is
used. Thus, only those formulas which are safe with respect to {x} should be allowed
in the Comprehension Axiom Scheme of our systems. In order to show that the
safety relation � indeed possesses the above property we examine some of its defining
clauses. It is not difficult to see that the formula x ∈ y should be safe w.r.t. {x} (but
not w.r.t. {y}), since if the identity of y is predicatively acceptable as a set, then any
of its elements must be previously accepted as a set, and {x |x ∈ y} = y. Another
example can be given by looking at the clause for negation. The intuitive meaning of
{x | ¬ϕ} is the complement (with respect to some universe) of {x |ϕ}, which is not
in general predicatively accepted. However, if ϕ is absolute (or “definite”), then its
negation will be absolute (“definite”) as well. This also explains the additional axiom of
Restricted Excluded Middle in RST iFOLC and RST iALC , which asserts the definiteness
of absolute formulas. For a more complicated example, assume that θ = ϕ∧ψ, where
Fv (ϕ) = {x, z}, Fv (ψ) = {x, y, z}, ϕ � {x} and ψ � {y}. Given some absolute
set c, by the induction hypothesis the collection Z(c) of all x such that ϕ (x, c) is an
absolute set. Again by the induction hypothesis, for every d in this set the collection
W (c, d) of all y such that ψ(d, y, c) is an absolute set. Now the collection of all 〈x, y〉
such that θ(x, y, c) is the union for d ∈ Z(c) of the sets {d} × W (c, d). Hence, it
is a set containing only previously accepted, absolute collections, and its identity is
obviously absolute too. This is exactly what θ � {x, y} (which holds in this case
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by the clause concerning conjunction in the definition of �) intuitively means. For a
TC-formula, the justification of the safety clause for it can be easily obtained if we
look at the intuitive meaning of (TCx,yϕ) (x, y) as an infinite disjunction (see Section
3.1). The safety clauses for ∃,∨,∧ imply that if ϕ � Φ and x ∈ Φ (or y ∈ Φ), then
any finite initial of the infinite disjunction is safe w.r.t Φ. From this it easily follows
that so is the whole disjunction.

The second principle of the predicative approach requires that N (the set of natural
numbers) constitutes a set. However, in the first-order systems, the collection of
hereditary finite sets is the minimal model of RST FOL; hence N is not definable as
a set in RST FOL. To solve this problem, RST FOL is enhanced above by including a
special constant HF in C whose intended interpretation is the set of all hereditary
finite sets. The axioms for the constant symbol HF ensure (as far as it is possible
on the first-order level) that HF is indeed to be interpreted as this collection. These
axioms in fact replace the usual infinity axiom of ZF . In contrast, in case ancestral
logic is used the natural numbers can be defined using the TC operator. Therefore,
in RSTAL the additional constant HF and its axioms are not necessary (see Section
5.5 for the introduction of the natural numbers in RST FOL{HF} and in RSTAL).

It should be clear that the use of ancestral logic is compatible with the predicative
approach. The reason is that the second principle of predicativism entails acceptance
of principles and ideas implicit in the construction of N. This includes proofs by
mathematical induction, as well as the idea of iterating (an operation or a relation)
an arbitrary (finite) number of times. Therefore finitary inductive definitions of sets,
relations, and functions should be accepted. In particular, the ability to form the
transitive closure of a given relation should also be predicatively acceptable.5

The inclusion of the Restricted ∈-induction Scheme is mainly in order to be able to
prove predicatively valid statements like ∀x.x /∈ x or ∀x, y.x ∈ y → y /∈ x. Actually,
even the addition of the full ∈-induction does not seem to be in any conflict with
the predicative approach. On the contrary, it only imposes further restrictions on
the collection of acceptable sets. Nevertheless, to be on the safe side, like in [44], we
do not adopt here the full ∈-induction scheme, but only a very restricted form of it.

5It is interesting to note that in case we are interested in pure finitism, and thus do not want to
assume any form of infinity, this can be achieved by simply replacing the clause in the safety relation
referring to TC-formulas by the following clause: If ϕ � Φ and {x, y} ⊆ Φ, then (TCx,yϕ) (x, y) � Φ.
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Moreover, we will try to avoid (as much as possible) the use of this axiom, and we
shall point out the places where it is used.

Note 5.2.7. The systems RST cFOL and RST cFOL{HF} are subsystems of ZF , as all of their
axioms are easily provable in ZF . On the other hand, in [8] it was shown that some
of the comprehension axioms of ZF (such as the Union axiom) are already derivable
in RST cFOL, while the others can be incorporated by adding corresponding clauses
to the definition of the safety relation. In particular:

• The full power of restricted comprehension can be achieved by assuming that
ϕ � ∅ for any ϕ (not only atomic ones).6

• The power set axiom is equivalent to letting x ⊆ t � {x} in case x /∈ Fv (t).

• The full power of replacement is achieved by letting ∃yϕ ∧ ∀y (ϕ→ ψ) � Θ if
ψ � Θ and Θ ∩ Fv (ϕ) = ∅.

The system RST iFOL without the axiom scheme for restricted excluded middle can
easily be shown to be is a subsystem of IZF and CZF . It can also be shown (using
results from [70]) that RST iFOL is a subsystem of IZF and CZF if one adds to the
latter an axiom scheme for excluded middle for bounded formulas (see, e.g., [2]).

Proposition 5.2.8. Let C be a set of constants which contains HF . The followings
are provable in RSTC:

1. ∀x (x ∈ HF ↔ x = ∅ ∨ ∃u, v ∈ HF.u ∪ {◦v◦} = x).

2. (ϕ (∅) ∧ ∀x∀y (ϕ (x) ∧ ϕ (y)→ ϕ (x ∪ {◦y◦})))→ ∀x ∈ HF.ϕ (x), where ϕ � ∅.7

3. ψ (HF ) ∧ ∀a (ψ (a)→ HF ⊆ a), where ψ (a) denotes the formula:
∀x (x ∈ a↔ x = ∅ ∨ ∃u, v ∈ a.u ∪ {◦v◦} = x).

6In other words, by assuming that any first-order formula is “definite” in Zermelo’s sense (see
Introduction).

7It is possible to prove the full induction principle for HF by using the full ∈-induction. See
Prop. 5.5.6 for an example of how this is done in a similar case.
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Proof.

1. The right-to-left implication is provable in RSTC using the first two axioms
for HF . For the converse, define B := {◦ x ∈ HF | x = ∅ ∨ ∃u, v ∈
HF.u ∪ {◦v◦} = x ◦}. It is easy to verify that the formula ∅ ∈ B ∧ ∀v, w ∈
B.v ∪ {◦w◦} ∈ B is provable in RSTC . From this, using the third axiom of
HF , we get ∀x ∈ HF.x ∈ B, which by the Restricted Comprehension entails
∀x ∈ HF (x = ∅ ∨ ∃u, v ∈ HF.u ∪ {◦v◦} = x).

2. Suppose ϕ (∅) ∧ ∀x∀y (ϕ (x) ∧ ϕ (y)→ ϕ (x ∪ {◦y◦})). Let u = {◦ z ∈ HF | ϕ (z) ◦}
(This is a legal term, since we assume that ϕ � ∅). From the assumption and
the first two axioms for HF it is easy to see that ∅ ∈ u∧∀v, w ∈ u.v∪{◦w◦} ∈ u.
Therefore, by the third axiom for HF we get ∀x ∈ HF.x ∈ u, which by the
Restricted Comprehension entails ∀x ∈ HF.ϕ (x).

3. By part 1. of the proposition, we have ψ (HF ), and by the third axiom for HF
we can easily derive ∀z (ψ (z)→ ∀y ∈ HF.y ∈ z).

Note 5.2.9. Note that while the languages LC allow the use of set terms, they also
provide a mechanizable static check of their validity due to the syntactic safety re-
lation. In order to ensure the decidability of the syntax we did not include in the
definition of the safety relation the following natural condition: if ϕ � Θ and ψ is
logically equivalent to ϕ (where Fv (ϕ) = Fv (ψ)), then also ψ � Θ. This condition
would entail that {◦ x | ϕ ◦} is a valid term whenever {◦ x | ψ ◦} is a valid term, and ψ is
logically equivalent to ϕ. What we do however have in RSTC is that if `RSTC ϕ↔ ψ,
then `RSTC x ∈ {◦x | ϕ ◦} ↔ ψ, and so `RSTC ∃z∀x (x ∈ z ↔ ψ).

5.3 Universes

We next recall the definition of rudimentary functions (see [34, 58]).8 Rudimentary
functions are just the functions obtained by omitting the recursion schema from the
standard list of schemata for primitive recursive set functions.

8To be precise, the definition we take here is given in The Basis Lemma in [34]. It was shown
there that this definition is equivalent to the standard definition of rudimentary functions.
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Definition 5.3.1. Every rudimentary function is a composition of the following func-
tions:

• F0 (x, y) = {x, y}

• F1 (x, y) = x− y

• F2 (x, y) = x× y

• F3 (x, y) = {〈u, z, v〉 | z ∈ x ∧ 〈u, v〉 ∈ y}

• F4 (x, y) = {〈z, v, u〉 | z ∈ x ∧ 〈u, v〉 ∈ y}

• F5 (x, y) = {Im (x|z) | z ∈ y}, where Im (x|z) = {w | ∃u ∈ z. 〈u,w〉 ∈ x}

• F6 (x) =
⋃
z∈x
z

• F7 (x) = Dom (x) = {v | ∃w. 〈v, w〉 ∈ x}

• F8 (x) = {〈u, v〉 |u ∈ x ∧ v ∈ x ∧ u ∈ v}

We now consider the notion of relatively rudimentary functions.

Definition 5.3.2. Let C be a set of constants.

1. A function is called C-rudimentary if it can be generated by composition of the
functions F0, ..., F8 in Definition 5.3.1, and the following constant functions:

• F c
9 (x) = c, for c ∈ C.

2. A function is said to be C-rudimentary relative to C` if it can be generated from
the functions F0, ..., F8 in Definition 5.3.1 and the functions F c

9 for any c ∈ C,
by composition or by the following operation scheme:

• C` (x,H) =
⋃
m∈NH

m (x), where H is a C-rudimentary function relative
to C`, and H0 (x) = x (i.e., C` (x,H) denotes the closure of x under the
function H).

Notation. In case C = ∅ we write rudimentary relative to C`, instead of ∅-rudimentary
relative to C`.
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Definition 5.3.3. A universe (of sets) is a transitive collection of sets such that:

• In the first-order case: it is closed under rudimentary functions.

• In the AL case: it is closed under rudimentary functions relative to C`.

Terminology. In what follows, we do not distinguish between the universe W and the
structure for LC with domain W and an interpretation function I that assigns the
obvious interpretations to the symbols ∈ and =, and assigns to any c ∈ C an element
in W . In case HF ∈ C, I [HF ] = HF (the set of hereditary finite sets).

Note 5.3.4. For simplicity of presentation, in what follows we assume the platonic
universe V of ZF (whatever this universe is). The assumption of such an all-
encompassing collection V , which includes all potential “sets” and contains all “uni-
verses”, but is itself a universe too (meaning that classical logic holds within it), is
in fact doubtful from a predicativist point of view. However, from Theorem 5.3.12
below it should be clear that we can actually do without this assumption, since that
theorem entails “universe independence”.

Notation. If ~x,−→a are two vectors of the same length, we abbreviate v [~x := −→a ] for
v [x1 := a1, ..., yn := xn]. We denote by [x1 := a1, ..., xn := an] any assignment which
assigns to each xi the element ai.9

Definition 5.3.5. LetW be a universe and v an assignment inW . For any term t and
formula ϕ of LC , define recursively a collection ‖t‖Wv and a truth value ‖ϕ‖Wv ∈ {t, f},
respectively, by:

• ‖t‖Wv = v (x) for x a variable.

• ‖c‖Wv = I (c) for c ∈ C.

• ‖{◦ x | ϕ ◦}‖Wv =
{
a ∈ W | ‖ϕ‖Wv[x:=a] = t

}
• ‖t = s‖Wv = t iff ‖t‖Wv = ‖s‖Wv ; ‖t ∈ s‖Wv = t iff ‖t‖Wv ∈ ‖s‖

W
v

• ‖¬ϕ‖Wv = t iff ‖ϕ‖Wv = f

• ‖ϕ ∧ ψ‖Wv = t iff ‖ϕ‖Wv = t ∧ ‖ψ‖Wv = t

9As long as we apply [x1 := a1, ..., xn := an] to expressions whose set of free variables is contained
in {x1, ..., xn} the exact assignment does not matter of course.
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• ‖ϕ ∨ ψ‖Wv = t iff ‖ϕ‖Wv = t ∨ ‖ψ‖Wv = t

• ‖∃xϕ‖Wv = t iff ∃a
(
a ∈ W ∧ ‖ϕ‖Wv[x:=a] = t

)
• ‖(TCx,yϕ) (s, t)‖Wv = t iff

∃a1, ..., an ∈ W

(
‖s‖Wv = a1 ∧ ‖t‖Wv = an ∧

∧
i∈{0,1,...,n−1}

‖ϕ‖Wv[x:=ai,y:=ai+1]
= t

)

Note 5.3.6. From Theorem 5.3.8 below it follows that ‖t‖Wv is an element of W (and
it denotes the value in W that the term t gets under v), and ‖ϕ‖Wv denotes the truth
value of the formula ϕ under W and v.

Notation. In case exp is a closed term or a closed formula, we denote by ‖exp‖W the
value of exp in W , and at times we omit the superscript W and simply write ‖exp‖.

The following theorem is a generalization of a theorem proven in [9].

Theorem 5.3.7. Let C be a set of constants.

1. If F is an n-ary C-rudimentary function (relative to C`), then there exists a
formula ϕF of LCRST (LCRST+TC) such that:

• Fv (ϕF ) ⊆ {y, x1, ..., xn}

• ϕF � {y}

• F (x1, ..., xn) = {y | ϕF}

2. If ϕ is a formula of LCRST (LCRST+TC) such that:

• Fv (ϕ) ⊆ {y1, ..., yk, x1, ..., xn}

• ϕ � {y1, ..., yk}

then there exists a C-rudimentary function (relative to C`) Fϕ such that:

Fϕ (x1, ..., xn) = {〈y1, ..., yk〉 | ϕ}

3. If t is a term of LCRST (LCRST+TC) such that Fv (t) ⊆ {x1, ..., xn}, then there
exists a C-rudimentary function (relative to C`) Ft such that Ft (x1, ..., xn) = t

for every x1, ..., xn.
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Proof. The corresponding theorem in [9] establishes the connection between LRST
and rudimentary functions. Thus, the only modification required here is the treat-
ment of the new functions and operations in 1., and the treatment of the constants
in C and the transitive closure in 2. and 3. (which are then incorporated in the
original proof that was carried out by induction). For 1., it is easy to verify that
ϕF c

9
:= y = c. For C` (x,H), take ϕC`(x,H) to be the formula (TCx,yϕH) (x, y),

where ϕH exists due to the induction hypothesis. The fact that ϕH � {y} entails
that ϕC`(x,H) � {y}. For 2. and 3. (which are proven by simultaneous induction
on the structure of terms and formulas), the case for constants is immediate from
the definition of C-rudimentary functions. For the case of a TC-formula, suppose
ψ = (TCx,yϕ) (x, y) such that (w.l.o.g.) ψ � {y, y2, ..., yk}. This implies that also
ϕ � {y, y2, ..., yk}, and by the induction hypothesis there is a C-rudimentary func-
tion relative to C`, Fϕ, such that Fϕ (x, x2, ..., xn) = {〈y, y2, ..., yk〉 | ϕ}. Now, let
H (x, x2, ..., xn) =

⋃
〈y,y2,...,yk〉∈x Fϕ (y, x2, ..., xn), which is also C-rudimentary relative

to C`. Then, define: Fψ := C` (Fϕ (x, x2, ..., xn) , H).

Theorem 5.3.8. Let W be a universe, and let v be an assignment in W .

1. For t a term of LC, ‖t‖Wv ∈ W .

2. For ϕ a formula of LC:

(a) If ϕ � {y1, ..., yn} and n > 0, then:{
〈a1, ..., an〉 ∈ W n | ‖ϕ‖W

v[~y:=−→a ] = t
}
∈ W

(b) If ϕ � ∅ and {y1, ..., yn} ⊆ Fv (ϕ), then for any X ∈ W :{
〈a1, ..., an〉 ∈ Xn | ‖ϕ‖W

v[~y:=−→a ] = t
}
∈ W

Proof. The proof is straightforward using Theorem 5.3.7. Claims (1) and (2a) are
immediate. For (2b) let ϕ be a formula s.t. ϕ � ∅ and {y1, ..., yn} ⊆ Fv (ϕ). Using
Theorem 5.3.7 we get that ϕ defines a C-rudimentary predicate (relative to C`), Pϕ



5.3. Universes 73

(i.e. one whose characteristic function is rudimentary). Define:

H (x1, ..., xk, y1, ..., yn) =

{〈y1, ..., yn〉} if Pϕ (x1, ..., xk, y1, ..., yn)

∅ otherwise

H is a C-rudimentary function (relative to C`) (see Lemma 1.1 in [34]). Now, define:

F (z, x1, ..., xk) = zn ∩ {〈y1, ..., yn〉 |Pϕ (x1, ..., xk, y1, ..., yn)}

F is also C-rudimentary (relative to C`) since

F (z, x1, ..., xk) =
⋃

〈y1,...,yn〉∈zn
H (x1, ..., xk, y1, ..., yn)

Now, the fact that W is a universe entails that for every assignment v

in W and every X ∈ W , F (X, v (x1) , ...., v (xk)) ∈ W . In other words,{
〈a1, ..., an〉 ∈ Xn | ‖ϕ‖W

v[~y:=−→a ] = t
}
∈ W .

Proposition 5.3.9. Let W be a universe. Then, W is a model of RSTC.

Proof. The Extensionality axiom is clearly satisfied in any universe. Theorem 5.3.8
entails that the interpretation of any term is an element of the universe, from this
immediately follows that the other axioms are satisfied in any universe. In case
HF ∈ C, it is straightforward to verify that the interpretation of HF as HF satisfies
the three axioms for HF ; and in case AL is used, it is also easy to see that any
universe satisfies all the rules of the TC operator.

Note 5.3.10. The converse of the last proposition is also true, i.e., any transitive
collection of sets which is a model of RSTC is a universe (see [7]).

The proof of the following lemma is straightforward.

Lemma 5.3.11 (Substitution Theorem). Let t, s1, ..., sn be terms and ϕ a formula of
LC . If v is an assignment in W , then:

•
∥∥∥t{ si

xi
, ..., sn

xn

}∥∥∥W
v

= ‖t‖W
v[x1:=‖s1‖Wv ,...,xn:=‖sn‖Wv ]

•
∥∥∥ϕ{ si

xi
, ..., sn

xn

}∥∥∥W
v

= ‖ϕ‖W
v[x1:=‖s1‖Wv ,...,xn:=‖sn‖Wv ]



74 Chapter 5. The Predicative Framework

Next we show that the meaning of terms in LC is actually independent of W . The
following theorem is a more precise and more general formulation of Theorem 4 in
[9].

Theorem 5.3.12. Let W1,W2 be two universes which agree on the interpretations of
all c ∈ C.

1. If v1, v2 are assignments in W1 and W2, respectively, that agree on the values of
all the free variables in a term t, then ‖t‖W1

v1
= ‖t‖W2

v2
.

2. If v1, v2 are assignments in W1 and W2, respectively, that agree on the values of
all the free variables in a formula ϕ, then ‖ϕ‖W1

v1
= ‖ϕ‖W2

v2
.

Proof. The proof is carried out by simultaneous induction on t and ϕ.

Note 5.3.13. Theorem 5.3.12 shows that indeed every term of LC has the same inter-
pretation in all transitive models of RSTC (i.e., universes) which contain the values of
its parameters and interpret the constants in C in the same way. Thus, the identity
of the set denoted by a term t is independent of the exact extension of the assumed
surrounding universe of sets. Note again that a universe is here any transitive col-
lection of sets which is closed under certain operations. For instance, a platonist can
take W to be V , the cumulative universe of ZF . One can also take W to be Vκ for
any κ such that Vκ is a universe. However, W can also be taken as a much smaller,
and very concrete set. Thus in Section 6.1 we work within the universe J2 (the second
set in Jensen’s constructible hierarchy). This is in fact the minimal first-order uni-
verse which includes an infinite set. However, bigger (but still concrete and effectively
constructible) universes, like Jω or Jωω , might also be considered. The latter is the
minimal AL universe (see Section 6.2).

5.4 Basic Set Theoretical Notions

5.4.1 Standard Set Notations

In LC we can introduce as abbreviations many standard mathematical notations and
prove their basic properties in RSTC . The lemma below specifies some examples.
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Note 5.4.1. As mentioned, we are using different parenthesis in the formal languages
and in the metalanguage ({◦ ◦} and { }, respectively). To be extremely precise we should
have also used different notations for each of the abbreviations mentioned below, as
well as for standard symbols such as +, · which appear in the sequel. (In fact, we
should have used different notations for ∈ and = as well). However, for readability
we shall not do so, and trust the reader to deduce the correct use from the context.

Lemma 5.4.2. The following notations are available inRST FOL:

• ∅ := {◦ x | x ∈ x ◦}.

• {◦t1, ..., tn◦} := {◦ x | x = t1 ∨ ... ∨ x = tn ◦}, where x is fresh.

• 〈s, t〉 := {◦{◦s◦}, {◦s, t◦}◦}. 〈t1, ..., tn〉 := 〈〈t1, ..., tn−1〉 , tn〉.

• {◦ x ∈ t | ϕ ◦} := {◦ x | x ∈ t ∧ ϕ ◦}, provided ϕ � ∅ and x /∈ Fv (t).

• {◦ t | x ∈ s ◦} := {◦ y | ∃x.x ∈ s ∧ y = t ◦}, where y is fresh and x /∈ Fv (s).

• s× t := {◦ x | ∃a∃b.a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉 ◦}, where x, a, b are fresh.

• s ∪ t := {◦ x | x ∈ s ∨ x ∈ t ◦}, where x is fresh.

• s ∩ t := {◦ x | x ∈ s ∧ x ∈ t ◦}, where x is fresh.

• ∪t := {◦ x | ∃y ∈ t.x ∈ y ◦}, where x, y are fresh.

• ∩t := {◦ x | x ∈ ∪t ∧ ∀y ∈ t.x ∈ y ◦}, where x, y are fresh.

• ιx.ϕ :=
⋃
{◦ x | ϕ ◦}, provided ϕ � {x}.10

• Dom (t) := {◦ x | ∃z∃v∃y.z ∈ t ∧ v ∈ z ∧ y ∈ v ∧ x ∈ v ∧ z = 〈x, y〉 ◦}, where
z, v, x, and y are fresh.

• Im (t) := {◦ y | ∃z∃v∃x.z ∈ t∧ v ∈ z ∧ y ∈ v ∧ x ∈ v ∧ z = 〈x, y〉 ◦}, where z, v, x,
and y are fresh.

In RSTAL the following notations are also available:
10Due to the Extensionality Axiom, if ϕ � {x}, then the term above for ιx.ϕ denotes ∅ if there

is no set which satisfies ϕ, and it denotes the union of all the sets which satisfy ϕ otherwise. In
particular: this term has the property that if there is exactly one set which satisfies ϕ, then ιx.ϕ
denotes this unique set since ∪{a} = a. Note that the definition of ιx.ϕ taken here is simpler than
the definition used in [9], which was ∩{◦x | ϕ ◦} (where some caution was taken so that the term is
always well defined).



76 Chapter 5. The Predicative Framework

• TH (x) := x ∪ {◦ y | (TCx,yy ∈ x) (x, y) ◦}, the transitive hull of x.11

• N := {◦ x | x = ∅ ∨ ∃y.y = ∅ ∧ (TCx,y (x = S (y))) (x, y) ◦}.12

• HF = {◦ x | ∃y∃z.x ∈ y∧z = {◦∅◦}∧(TCz,y∃u ∈ z∃v ∈ z.y = z ∪ {◦u ∪ {◦v◦}◦}) (z, y) ◦}.

It is routine to verify that all these terms are indeed well defined, and that
their basic properties are provable in RST FOL or in RSTAL. Note that to prove
that ¬∃x.x ∈ ∅ we use the Restricted ∈-induction Scheme. To give another ex-
ample, ∀x (x ∈ {◦x ∈ t | ϕ ◦} ↔ x ∈ t ∧ ϕ) is a trivial consequence of the Compre-
hension Axiom and the definition of {◦ x ∈ t | ϕ ◦} as {◦ x | x ∈ t ∧ ϕ ◦}. Also,
by Definition 5.3.5, Theorem 5.3.8, and the fact that x /∈ Fv (t), we get that
‖{◦ x ∈ t | ϕ ◦}‖Wv =

{
a ∈ W | ‖x ∈ t ∧ ϕ‖Wv[x:=a] = t

}
=
{
a ∈ ‖t‖Wv | ‖ϕ‖

W
v[x:=a] = t

}
.

The fact that 〈s, t〉 is a term in our language implies only that if z /∈ Fv (t)∪Fv (s),
then z = 〈s, t〉 � {z} and 〈s, t〉 = z � {z}. However, in [8] another formula was
constructed that states that t is equal to the ordered pair 〈r, s〉:

t=̌ 〈r, s〉 := ∃u∃v (P (t, u, v) ∧ P (u, r, r) ∧ P (v, r, s))

where P (t, x, y) = x ∈ t ∧ y ∈ t ∧ ∀w (w ∈ t→ w = x ∨ w = y) and w is a fresh
variable. Denote by 〈r, s〉 ∈̌t the formula: ∃u ∈ t (u=̌ 〈r, s〉), where u is a fresh
variable which does not occur in t, r, or s. The following is then proved in [8]:

Lemma 5.4.3.

1. t=̌ 〈x, s〉 � {x}, t=̌ 〈s, x〉 � {x} and t=̌ 〈x, y〉 � {x, y} for x, y /∈ Fv (t).

2. 〈x, s〉 ∈̌t � {x}, 〈s, x〉 ∈̌t � {x} and 〈x, y〉 ∈̌t � {x, y} for x, y /∈ Fv (t).

3. `RSTC r = 〈s, t〉 ↔ r=̌ 〈s, t〉.

Note that the first and second coordinate of a pair can be extracted using ι:

π1 (z) := ιx.∃y.z=̌ 〈x, y〉 , π2 (z) := ιy.∃x.z=̌ 〈x, y〉

11That is, the smallest transitive set (with respect to inclusion) which contains x.
12See Section 5.5 for more details.
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5.4.2 Classes

In standard mathematical practice, one always works with extensions of the base lan-
guage by definitions of new relations and functions. We wish to allow such extensions
in our framework too.13 We start with the problem of introducing new predicate
symbols (leaving the addition of new function symbols to Subsection 5.4.3). Since
n-ary predicates can be reduced in the framework of set theory to unary predicates,
we first focus on the introduction of new unary predicates. In standard practice an
extension of this sort is carried out by introducing a new unary predicate symbol P
and either treating P (t) as an abbreviation for ϕ (t) for some formula ϕ, or (what
is more practical) adding ∀x (P (x)↔ ϕ) as an axiom to the (current version of the
base) theory, obtaining by this a conservative theory in the extended language . How-
ever, in the set theoretical framework it is possible and frequently more convenient to
uniformly use class terms, rather than introduce a new predicate symbol each time
(the origins of this approach date back to [92]). Thus, instead of writing “P (t)” one
uses an appropriate class term S and writes “t ∈ S”. Whatever approach is chosen,
the definition of a safety relation demands that any new atomic formula which is gen-
erated in an extension of the language should be safe with respect to ∅. Therefore,
class terms should be restricted in our framework so that “t ∈ S” is safe with respect
to ∅. Accordingly, we extend our language by incorporating class terms which are
objects of the form {◦x |̂ϕ◦}, where ϕ � ∅. (A closed class term is a class term {◦x |̂ϕ◦}
where Fv (ϕ) ⊆ {x}.) The extension of the language is constructed in the standard
way, as described, e.g., in [72]:

• t ∈ {◦x |̂ϕ◦} (where t is free for x in ϕ) is equivalent to (and may be taken as an
abbreviation for) ϕ

{
t
x

}
.

Note that the new atomic formulas of the form “t ∈ {◦x |̂ϕ◦}” indeed represent formulas
which are safe with respect to ∅ (by Lemma 5.2.4). Further standard abbreviations
(see again [72]) are:

• t ⊆ {◦x |̂ϕ◦} is an abbreviation for ∀z
(
z ∈ t→ z ∈ {◦x |̂ϕ◦}

)
.

• t = {◦x |̂ϕ◦} and {◦x |̂ϕ◦} = t stand for ∀z
(
z ∈ t↔ z ∈ {◦x |̂ϕ◦}

)
.

13Actually, we have already used such an extension in the introduction of ⊆.
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• {◦x |̂ϕ◦} = {◦y |̂ψ◦} is an abbreviation for ∀z
(
z ∈ {◦x |̂ϕ◦} ↔ z ∈ {◦y |̂ψ◦}

)
.

• {◦x |̂ϕ◦} ∈ t is an abbreviation for ∃z.z = {◦x |̂ϕ◦} ∧ z ∈ t.

• {◦x |̂ϕ◦} ∈ {◦y |̂ψ◦} is an abbreviation for ∃z.z = {◦x |̂ϕ◦} ∧ z ∈ {◦y |̂ψ◦}.

Note that these formulas are merely abbreviations for formulas which are not nec-
essarily atomic (even though, t ⊆ {◦x |̂ϕ◦} also happens to be safe with respect to
∅).

It should be emphasized that a class term is not a valid set term in the language,
only a definable predicate. This means that everything we can say using the new
notation can be formulated already in LC ; i.e., adding the new notation does not
enhance the expressive power of LC , it only increases the ease of using it.

A further conservative extension of the language we shall use incorporates free
class variables, X,Y ,Z, and free function variables, F ,G, into LC (as in free-variable
second-order logic, see [102]). These variables stand for arbitrary class or function
terms (the latter will be defined in the sequel — see Def. 5.4.12), and they may
only appear as free variables, never to be quantified.14 We allow occurrences of such
variables inside a formula in a class term or a function term. One may think of a
formula with such variables as a schema, where the variables play the role of “place
holders” and whose substitution instances are the official formulas of the language. In
fact, their immediate instances are not formulas of LC , but formulas of the extended
language with class terms, but as noted above, there is no difficulty in interpret-
ing such formulas in LC (for an example of such translation see Example 6.1.18 on
page 100). These kinds of schemes are similar to the schemes in the formalization
of the Comprehension Schema and the Restricted ∈-induction Schema, where ϕ is a
“place holder” to be substituted by any valid formula of the language. In effect, a
formula ψ (X) with free class variable X can be intuitively interpreted as “for any
given class X, ψ (X) holds”. Thus, a free-variable formulation has the flavor of a
universal formula.15 Therefore, this addition enables us to make statements about all
potential classes and all potential functions.

14Admitting the quantification over such variables would lead to stronger languages and systems.
15It is worth noting that in such a language there isn’t, in general, a formula which states the

existence of a class or a function.
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For a class term {◦x |̂ϕ◦} we define
∥∥∥{◦x |̂ϕ◦}∥∥∥W

v
=
{
a ∈ W | ‖ϕ‖Wv[x:=a] = t

}
. We say

that the class term defines the latter collection. Note that this collection may not be
an element of W . If t is a closed set term of LC such that ‖t‖W = X we also say that
t defines X (and so X is definable by t).

Definition 5.4.4. Let X be a collection of elements in W .

• X is a �-set if there is a closed term that defines it.

• X is a �-class if there is a closed class term which defines it.

Note that, by Theorem 5.3.8, X is a �-set iff X ∈ W .

Notation. If X is a �-set, X̃ denotes some closed term which defines it. If X is a �-
class, X̄ denotes some class term which defines it. (The exact choices are irrelevant).

Proposition 5.4.5. The following holds:

1. Every �-set is a �-class.

2. The intersection of a �-class with a �-set is a �-set.

3. Every �-class that is contained in a �-set is a �-set.

Proof.

1. If X is a �-set, the formula x ∈ X̃ is safe with respect to {x}, thus by Lemma
5.2.4 we get that x ∈ X̃ � ∅. This implies that {◦x |̂x ∈ X̃◦} is a class term which
defines X, hence X is a �-class.

2. Let X be a �-class and Y be a �-set. Then, X ∩ Y can be defined by the
term {◦ z | z ∈ X̄ ∧ z ∈ Ỹ ◦}. Since z ∈ X̄ � ∅ and z ∈ Ỹ � {z}, we get that
z ∈ X̄ ∧ z ∈ Ỹ � {z}, hence X ∩ Y is a �-set.

3. Follows immediately from 2., since if X ⊆ Y , then X = X ∩ Y .

Proposition 5.4.6. The following holds:

• Let Y be a �-set. If ϕ � ∅ and Fv (ϕ) ⊆ {x}, then {x ∈ Y | ϕ} is a �-set.

• If ϕ � {x1, ..., xn}, then {〈x1, ..., xn〉 | ϕ} is a �-set.
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Proof.

• {x ∈ Y | ϕ} is definable by {◦ x | x ∈ Ỹ ∧ ϕ ◦}.

• {〈x1, ..., xn〉 | ϕ} is definable by {◦ z | ∃x1...∃xn (ϕ ∧ z = 〈x1, ..., xn〉) ◦}, where z
is a fresh variable.

Proposition 5.4.7. For every n-ary C-rudimentary function (relative to C`) there is
a term t of LCRST (LCRST+TC) with Fv (t) ⊆ {x1, ...xn} that defines the function in the
following sense: for any �-sets X1, ..., Xn, it returns the �-set ‖t‖W[x1:=X1,...,xn:=Xn]

.

Proof. From Lemma 5.2.4 it follows that if X1, ..., Xn are �-sets and ϕ is a formula
such that Fv (ϕ) ⊆ {y, v1, ...vn} and ϕ � {y}, then

{
y | ϕ

{
X̃1

v1
, ..., X̃n

vn

}}
is a �-set.

Therefore the proposition easily follows from Theorem 5.3.7.

Proposition 5.4.8. If X, Y are �-classes, so are X ∪ Y , X ∩ Y , X × Y , W −X.

Proof.

• X ∪ Y = {◦x |̂x ∈ X̄ ∨ x ∈ Ȳ ◦}, and x ∈ X̄ ∨ x ∈ Ȳ � ∅.

• X ∩ Y = {◦x |̂x ∈ X̄ ∧ x ∈ Ȳ ◦}, and x ∈ X̄ ∧ x ∈ Ȳ � ∅.

• X × Y = {◦x |̂ ∃a∃b
(
a ∈ X̄ ∧ b ∈ Ȳ ∧ x=̌ 〈a, b〉

)
◦}. a ∈ X̄ ∧ b ∈ Ȳ � ∅ and by

Prop. 5.4.3 x=̌ 〈a, b〉 � {a, b}, thus ∃a∃b
(
a ∈ X̄ ∧ b ∈ Ȳ ∧ x=̌ 〈a, b〉

)
� ∅.

• W −X = {◦x |̂x /∈ X̄◦}, and since x ∈ X̄ � ∅ also x /∈ X̄ � ∅.

Proposition 5.4.9. The following holds:

• If X is a �-class, then z ⊆ X̄ � ∅.

• If X is a �-class, then so is PW (X) = {z ∈ W | z ⊆ X}.

Proof.

• Since a ∈ X̄ � ∅, by Lemma 5.2.4, ∀a
(
a ∈ z → a ∈ X̄

)
� ∅.

• Follows from the first claim of the Proposition, since PW (X) is definable by
{◦z |̂ z ⊆ X̄◦}.
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For a class term s we denote by 2s the class term {◦z |̂ z ⊆ s◦}. Note that for any
assignment v in W and class term s, ‖2s‖Wv is equal to PW

(
‖s‖Wv

)
, i.e., the inter-

section of the power set of ‖s‖Wv and W . In general, for every other universe the
interpretation of 2s will be the collection of all subsets of ‖s‖Wv in that universe. This
demonstrates the main difference between set terms and class terms. The interpreta-
tion of set terms is absolute, whereas the interpretation of class terms might not be
(though membership in the interpretation of a class term is absolute).

5.4.3 Relations and Functions

Definition 5.4.10. A �-relation from a �-class X to a �-class Y is a �-class A
such that A ⊆ X × Y . A �-relation is called small if it is a �-set.

Terminology. In what follows, claiming that a certain object is available in RSTC

as a �-relation means that it is definable as a �-relation in LC , and that its basic
properties are provable in RSTC .16

Proposition 5.4.11. Let X, Y be �-classes and R a �-relation from X to Y .

1. R is small iff Dom (R) and Im (R) are �-sets.

2. R−1 = {〈y, x〉 | 〈x, y〉 ∈ R} is available in RSTC as a �-relation from Y to X.
If R is small, then so is R−1.

3. If Z ⊆ X is a �-class and U ⊆ Y is a �-class, then R ∩ (Z × U) is available
in RSTC as a �-relation from Z to U .

Proof.

1. (⇒) If R is a �-set, then ∃y. 〈x, y〉 ∈̌R̃ � {x} and ∃x. 〈x, y〉 ∈̌R̃ � {y}. Thus,
Dom (R) is defined by {◦ x | ∃y. 〈x, y〉 ∈̌R̃ ◦} and Im (R) by {◦ y | ∃x. 〈x, y〉 ∈̌R̃ ◦}.
Note that we can use ∈̌ since the �-relation is small.
(⇐) If Dom (R) and Im (R) are �-sets, then Dom (R)× Im (R) is a �-set, as
× is a rudimentary function. Since R is a �-class such that R ⊆ Dom (R) ×
Im (R), Prop. 5.4.5 entails that R is a �-set.

16The “basic properties” of a certain object is of course a fuzzy notion. However, it is not difficult
to identify its meaning in each particular case, as will be demonstrated in several examples below.
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2. Since R is a �-class, we can define R−1 = {◦z |̂ ∃x∃y
(
〈x, y〉 ∈ R̄ ∧ z=̌ 〈y, x〉

)
◦}.

∃x∃y
(
〈x, y〉 ∈ R̄ ∧ z=̌ 〈y, x〉

)
� ∅, as z=̌ 〈y, x〉 � {x, y} and 〈x, y〉 ∈ R̄ � ∅. It

is standard to prove in RSTC related basic properties, such as 〈x, y〉 ∈ R ↔
〈y, x〉 ∈ R−1 and (R−1)

−1
= R. If R is a �-set, R−1 can be defined by {◦ z |

∃x∃y
(
〈x, y〉 ∈ R̃ ∧ z = 〈y, x〉

)
◦}, hence R−1 is a �-set.

3. Surely R ∩ (Z × U) ⊆ Z × U. By Prop. 5.4.8, since R,Z, U are �-classes, we
have that R ∩ (Z × U) is a �-class.

Next we extend our framework by the introduction of new function symbols. This
poses a new difficulty. While new relation symbols are introduced in a static way, new
function symbols are usually introduced dynamically : a new function symbol is made
available after appropriate existence and uniqueness theorems have been proven (see,
e.g., [103] for a precise detailed description of the process). However, one of the main
guiding principles of our framework is that its languages should be treated exclusively
in a static way, independent of any set of axioms. Thus function symbols, too, are
introduced only as abbreviations for definable operations on sets.

Definition 5.4.12. For a �-class X and a term t of LC , λx ∈ X̄.t is a function term
which is an abbreviation for {◦z |̂ ∃x∃y

(
z=̌ 〈x, y〉 ∧ x ∈ X̄ ∧ y = t

)
◦}.

Definition 5.4.13.

• A �-class F is called a �-function on a �-class X if there is a term t of LC

such that Fv (t) ⊆ {x}, and F =
∥∥λx ∈ X̄.t∥∥. t is said to be a term which

represents F .

• A �-function on �-class X is called small if it is a �-set.

• A �-class is called a �-function if it is a �-function on some �-class.

From this definition it follows that the standard functionality condition is always
satisfied in a �-function.

Terminology. In what follows, claiming that an object is available in RSTC as a �-
function means that it is definable as a �-function in LC , and that its basic properties
are provable in RSTC .
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Proposition 5.4.14. A �-set is a function according to the standard mathematical
definition (a relation that satisfies the functionality condition) iff it is a small �-
function.

Proof. Let A be a �-set which is a relation that satisfies the functionality condition.
Since A is a �-set, there is a closed term Ã that defines it. A is a �-function on
the �-set Dom (A) since the term t = ιy. 〈x, y〉 ∈̌Ã represents it (see Lemma 5.4.2).
The term t is legal and it represents A since 〈x, y〉 ∈̌Ã � {y} and A satisfies the
functionality condition. The converse is trivial, since for every small �-function there
is a term representing it, and thus the functionality condition clearly holds by the
equality axioms of FOL.

Notation. Let F =
∥∥λx ∈ X̄.t∥∥ be a �-function. We employ standard β-reduction

for λ terms. That is, if s is a term free for x in t, we write F (s) for t
{
s
x

}
. Hence

F (s) = y is an abbreviation for t
{
s
x

}
= y, and so if y /∈ Fv [t] ∪ Fv [s] \ {x}, then

F (s) = y � {y}.

Proposition 5.4.15 (The predicative class form of the axiom of replacement). Let
F be a �-function on a �-class X. Then for every �-set A ⊆ X, the image of A
under F (i.e., F [A] = {f (a) | a ∈ A}) is a �-set.

Proof. Let F be a �-function on a �-class X, and let A be a �-subset of X. Then,
{◦ y | ∃a ∈ Ã.F (a) = y ◦} is a closed term which defines F [A].

The next Lemma provides a straightforward generalization of Definition 5.4.13 to
functions of several variables. We omit its straightforward proof.

Lemma 5.4.16. If X1, ..., Xn are �-classes and t is a term such that . Fv (t) ⊆
{x1, ..., xn}, then F =

∥∥λx1 ∈ X̄1, ..., xn ∈ X̄n.t
∥∥ is available in RSTC as a �-

function on X1 × ... × Xn. (where λx1 ∈ X̄1, ..., xn ∈ X̄n.t is an abbreviation for
{◦ 〈〈x1, ..., xn〉 , t〉 |̂ 〈x1, ..., xn〉 ∈ X̄1 × ...× X̄n◦}).

Corollary 5.4.17. Every C-rudimentary function (relative to C`) is available in
RST FOLC (RSTALC ) as a �-function.

Proof. Follows immediately from Lemma 5.4.16 and Prop. 5.4.7.
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Proposition 5.4.18. Let F be a �-function on a �-class X.

1. F is small iff X is a �-set.

2. If Y0 is a �-class, then F−1 [Y0] = {a ∈ X | F (a) ∈ Y0} is a �-class. If F is
small, then F−1 [Y0] is a �-set.

3. If X0 ⊆ X is a �-class, then F �X0 is available in RSTC as a �-function on
X0.

4. If G is a �-function on a �-class Y and Im(F ) ⊆ Y , then G ◦ F is available
in RSTC as a �-function on X.

5. If G is a �-function on a �-class Y and F and G agree on X ∩ Y , then G∪F
is available in RSTC as a �-function on X ∪ Y .

6. If Z is a �-class, then the identity map on Z and any constant function on Z
are available in RSTC as �-functions.

Proof.

1. (⇒) F is a�-set, thusDom (F ) = X is also a�-set, sinceDom is a rudimentary
function.
(⇐) Let t be a term that represents F . If X is a �-set, then F =

∥∥∥λx ∈ X̃.t∥∥∥
which is a �-set.

2. F−1 [Y0] = {◦a |̂ a ∈ X̄ ∧ F (a) ∈ Ȳ0◦} . Since a ∈ X̄ ∧ F (a) ∈ Ȳ0 � ∅, we get that
F−1 [Y0] is a �-class. If F is small, then by 1. we have that X is a �-set. The
fact that F−1 [Y0] ⊆ X implies that F−1 [Y0] is a �-set.

3. If t is a term that represents F , the same term t represents F �X0 .

4. Denote by tF , tG terms that represent the �-functions F,G, respectively. Thus,
G ◦ F =

∥∥∥λx ∈ X.tG { tF (x)
x

}∥∥∥. It is easy to see that standard properties, such
as the associativity of ◦, are provable in RSTC .

5. Denote by tF , tG terms that represent the �-functions F,G, respectively. Thus,
F ∪G =

∥∥λx ∈ X̄ ∪ Ȳ .ιy. ((x ∈ X̄ ∧ y = tF
)
∨
(
x ∈ Ȳ − X̄ ∧ y = tG

))∥∥. Since
each of the adjuncts is safe with respect to {y}, we get that the term is valid. It is
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easy to verify that in RSTC basic properties, such as ∀x ∈ X̄.G ∪ F (x) = F̄ (x),
are provable.

6. idZ =
∥∥λz ∈ Z̄.z∥∥, and for any A ∈ J2, constA =

∥∥∥λz ∈ Z̄.Ã∥∥∥. Proving proper-
ties such as ∀x, y ∈ Z̄.constA (x) = constA (y) in RSTC is straightforward.

5.5 The Natural Numbers

We follow the standard construction of the natural numbers:

0 : = ∅,
n+ 1 : = S (n) ,

where S (n) = n ∪ {n}. Obviously, each n ∈ N is a �-set, and N (the set of natural
numbers) is contained in HF .

5.5.1 The Natural Numbers in RST FOLC

In this section we assume HF ∈ C.

Proposition 5.5.1. N = {0, 1, 2, ...} is a �-set.

Proof. Denote by Ord (x) the formula Trans (x) ∧ Linear (x), where:

Linear (x) :=∀z∀y (z ∈ x ∧ y ∈ x→ (z ∈ y ∨ y ∈ z ∨ z = y))

Trans (n) :=∀z∀y (y ∈ x ∧ z ∈ y → z ∈ x)

It is straightforward to verify that Ord (n) � ∅. Hence, N is definable by the term
{◦n ∈ HF | Ord (n) ◦}.

Lemma 5.5.2. The followings are provable in RST FOLC :

1. ∀a.Ord (a)→ ∀z ∈ a.Ord (z)

2. ∀a, b. (Ord (a) ∧Ord (b))→ (a ∈ b ∨ b ∈ a ∨ a = b)

3. ∀x ∈ HF.x = ∅∨∃z ∈ x¬Ord (z)∨∃z.max (x) = z, where max (x) = z denotes
the formula z ∈ x ∧ ∀w ∈ x.w ∈ z ∨ w = z.
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Proof. The proofs of 1. and 2. are standard. For 3., let ϕ (x) be the formula
x = ∅ ∨ ∃z ∈ x¬Ord (z) ∨ ∃z.max (x) = z. Then ϕ � ∅, and so we can prove
∀x ∈ HF.ϕ by induction on HF (Prop. 5.2.8(2)). Clearly we have ϕ (∅). Assume
ϕ (x)∧ϕ (y). We prove ϕ (x ∪ {◦y◦}). If x = ∅, thenmax (x ∪ {◦y◦}) = y, thus ϕ (x ∪ {◦y◦})
obtains. If ∃z ∈ x¬Ord (z), then ∃z ∈ x∪{y} .¬Ord (z), and again ϕ (x ∪ {◦y◦}) holds.
Otherwise, we have that x 6= ∅∧∀z ∈ xOrd (z)∧∃z.max (x) = z. If y is not an ordinal,
then ∃z ∈ x ∪ {y} .¬Ord (z), otherwise, denote by z0 the maximum of x. Then we
have Ord (y)∧Ord (z0) and by claim (2) of this Lemma we get y ∈ z0∨z0 ∈ y∨y = z0.
If y ∈ z0 or y = z0 then max (x ∪ {◦y◦}) = z0, otherwise the transitivity of y implies
that max (x ∪ {◦y◦}) = y.17

Proposition 5.5.3. `RSTFOL
C
∀n ∈ Ñ.n = 0 ∨ ∃k ∈ n.n = S(k).

Proof. Let n be an element in N. Then Ord (n) and n ∈ HF . By Lemma 5.5.2(1),
we get ∀z ∈ n.Ord (z). Hence Lemma 5.5.2(2) implies that n = ∅ ∨ ∃z.max (n) = z.
If n = ∅ we are done. Otherwise, denote by z0 the maximum of n. We prove that
n = S (z0). If x ∈ n, then x ∈ z0 (i.e., x ∈ z0 ∨ x = z0) by the maximality of z0. For
the converse, assume x ∈ z0. If x = z0 then clearly x ∈ n. If x ∈ z0, then by the
transitivity of n we again conclude that x ∈ n.

The next proposition shows that the induction rule of Peano’s arithmetic is avail-
able in RST FOLC for ϕ � ∅.

Proposition 5.5.4. `RSTFOL
C

(ϕ (0) ∧ ∀x (ϕ→ ϕ (S (x))))→ ∀x ∈ Ñ.ϕ, where ϕ � ∅

Proof. Let ϕ � ∅, and assume ϕ (0) ∧ ∀x (ϕ→ ϕ (S (x))). Denote by ψ (x) the
formula Ord (x) → ϕ (x). Since ϕ (x) � ∅, using Lemma 5.2.8(2) we deduce
(ψ (∅) ∧ ∀x∀y (ψ (x) ∧ ψ (y)→ ψ (x ∪ {◦y◦})))→ ∀x ∈ HF.ψ (x). Clearly ψ (∅) is prov-
able in RST FOLC , since we have ϕ (0). Now, assume ψ (x) ∧ ψ (y). We show that we
can prove ψ (x ∪ {◦y◦}). Suppose Ord (x ∪ {◦y◦}). Thus, it must be the case that both
Ord (x) andOrd (y) (since otherwise we get ¬Ord (x ∪ {◦y◦}) using Lemma 5.5.2). This,
together with the assumption ψ (x) ∧ ψ (y), entails ϕ (x) ∧ ϕ (y). Now, by Lemma
5.5.2(2) we get that x ∪ {◦y◦} ∈ x ∨ x ∈ x ∪ {◦y◦} ∨ x ∪ {◦y◦} = x. In case x ∪ {◦y◦} = x,
we get that ϕ (x ∪ {◦y◦}), since we have ϕ (x). If x ∪ {◦y◦} ∈ x, then by Trans (x) we

17Note that the proofs of 1. and 2. can be carried out in RSTFOL.



5.5. The Natural Numbers 87

get that y ∈ x and thus again x ∪ {◦y◦} = x. In case x ∈ x ∪ {◦y◦}, then x = y18 and
thus x ∪ {◦y◦} = x ∪ {◦x◦}. By the initial assumption we have ϕ (x ∪ {◦x◦}) which entails
ϕ (x ∪ {◦y◦}).

Next we give a direct construction of addition and multiplication on N as small �-
functions. This formalization enables proving the basic properties of these�-functions
in RST FOLC .

Proposition 5.5.5. The following holds:

1. The standard ordering ≤ on N is available in RST FOLC as a small �-relation.

2. The standard addition and multiplication of natural numbers are available in
RST FOLC as small �-functions.

Proof.

1. The standard ordering < on N coincides with ∈. Thus ≤ is definable by the
term {◦ 〈m,n〉 ∈̌Ñ× N | m = n ∨m ∈ n ◦}. Since N is a �-set, so is N× N, and
m = n ∨m ∈ n � ∅ , thus by Proposition 5.4.6 we get that ≤ is a �-set. It is
now straightforward to prove in RST FOLC the basic properties of ≤, like it being
a linear order or the existence of a successor for each element in N.

2. Let Func (f) denote the formula ∀a, b, c (〈a, b〉 ∈̌f ∧ 〈a, c〉 ∈̌f → b = c), and
add (z, u, n, f) denote the formula:
(z = 0 ∧ u = n) ∨ ∃z1, u1 ∈ Ñ (〈z1, u1〉 ∈̌f ∧ z = S (z1) ∧ u = S (u1)).
Define:

ψadd(n, k, f) :=

Func (f) ∧ ∀x
(
x ∈ f ↔ ∃z, u ∈ Ñ (z ≤ k ∧ x = 〈z, u〉 ∧ add (z, u, n, f))

)
Intuitively, the formula ψadd(n, k.f) states that f stands for the collec-
tion {〈0, n〉 , 〈1, n+ 1〉 , 〈2, n+ 2〉 , ..., 〈k, n+ k〉}. It is standard to check that
ψadd(n, f) � ∅. Now, define addition (using Lemma 5.4.16) by the term

+ := λn ∈ Ñ, k ∈ Ñ.ιm.∃f ∈ HF (ψadd(n, k, f) ∧ 〈k,m〉 ∈̌f) .

18Here we use the fact that ∀x.x /∈ x which is provable in RSTC due to the Restricted ∈-induction.
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n + k is a valid term since f ∈ HF � {f} and 〈k,m〉 ∈̌f ∧ ψadd(n, f) � {m}.
Addition is a small �-function, as N× N is a �-set.
Multiplication is defined using the same method by replacing add (z, u, n, f)

with mult (z, u, n, f), which is defined by:
(z = 0 ∧ u = 0)∨∃z1, u1 ∈ Ñ (〈z1, u1〉 ∈̌f ∧ z = S (z1) ∧ u = n+ u1) . Since + is
a small �-function, we get that ψmult(n, f) � ∅. Thus multiplication is defined
(using Lemma 5.4.16 ) by the term

· := λn ∈ Ñ, k ∈ Ñ.ιm.∃f ∈ HF (ψmult (n, k, f) ∧ 〈k,m〉 ∈̌f) .

It is not difficult to prove in RSTC (by induction, using Prop. 5.5.4) the stan-
dard properties of addition and multiplication, such as commutativity and as-
sociativity, as well as the connection between our definitions for addition and
multiplication and their standard recursive definitions, i.e.,

∀x.x+ 0 = x and ∀x, y.x+ S (y) = S (x+ y)

∀x.x · 0 = 0 and ∀x, y.x · S (y) = x+ (x · y)

Basic properties of the natural numbers which can be formulated in the language
of first-order Peano arithmetics are provable in RST FOLC using the restricted induction
principle given in Prop. 5.5.4. This is due to the fact that in their translation to LCRST ,
all the quantifications are bounded in N, and thus they are safe with respect to ∅.
However, if one wishes to get the power of full induction over N (i.e. for any formula
ϕ), this can be accomplished by adding to RST FOLC the full ∈-induction scheme (i.e.,
for any formula ϕ) as is shown in the next proposition.

Proposition 5.5.6. Let RST FOLC + (∈) be the system obtained by omitting the re-
striction of ϕ � ∅ from the Restricted ∈-induction Scheme. Then,

`RSTFOL
C +(∈) (ϕ (0) ∧ ∀x (ϕ→ ϕ (S (x))))→ ∀x ∈ Ñ.ϕ

Proof. Assume ϕ (0)∧∀x (ϕ→ ϕ (S (x))). Let ψ be the formula x ∈ Ñ→ ϕ. Suppose
∀x ∈ a.ψ (x). We shall prove ψ (a). Assume a ∈ Ñ. We have a = 0∨∃k ∈ a.a = S(k)

by Prop. 5.5.3. In case a = 0 we get ϕ (0), and thus ψ (a). Otherwise, there is k ∈ a
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such that a = S(k). By the second assumption we have that ψ (k), and by the first
assumption this entails ψ (S (x)). Thus, we have proven ∀a ((∀x ∈ a.ψ (x))→ ψ (a)),
and by the full ∈-induction scheme we get ∀a.ψ (a), i.e., ∀a ∈ Ñ.ϕ (a).

5.5.2 The Natural Numbers in RSTAL

Using the transitive closure operator, the natural numbers can be defined as a �-set,
even without the constant HF and its defining axioms. This can be done by the
defining formula given in Lemma 5.4.2:

N := {◦ x | x = ∅ ∨ ∃y.y = ∅ ∧ (TCx,y (x = S (y))) (x, y) ◦}

In [9] it was proven that all types of finitary inductive definitions are available
in RSTAL. From this it follows that the collection HF is available in RSTAL as a
�-set, since it is definable as the least X such that ∅ ∈ X, and a∪{b} ∈ X whenever
a, b ∈ X. Denote by tHF the set term of LRST+TC which defines HF given in Lemma
5.4.2. It is easy to verify that all of the axioms of HF are provable in RSTAL if we
replace HF by tHF . We now show that the definition of the natural numbers in AL
is equivalent to the one given in the previous section.

Proposition 5.5.7.

`RSTAL {◦ x | x = ∅ ∨ ∃y.y = ∅ ∧ (TCx,y (x = S (y))) (x, y) ◦} = {◦n ∈ tHF | Ord (n) ◦}

Proof. First notice that a formula of the form ∃y.y = ∅ ∧ (TCx,y (x = S (y))) (x, y) is
provably equivalent in RSTAL to (TCx,y (x = S (y))) (x, ∅) (using standard first-order
rules). Accordingly, assume x = ∅ ∨ (TCx,y (x = S (y))) (x, ∅). Denote by ψ (x) the
formula x ∈ tHF ∧ Ord (x). First we show that ψ (x) implies ψ (S (x)). By the tHF -
counterpart of the second axiom of HF , we get that x ∈ tHF entails S (x) ∈ tHF . To
show Linear (S (x)), let u, v ∈ x ∪ {x}. If u = v = x we are done. If u, v ∈ x, then
by linearity of x we are done. Otherwise (w.l.o.g.) u ∈ x = v and again we are done.
To show Trans (S (x)), let a ∈ x∪ {x} and b ∈ a. In case a ∈ x we get that b ∈ x by
the transitivity of x, and thus b ∈ x ∪ {x}. Otherwise, b ∈ a = x ⊆ x ∪ {x}. Hence,
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we have shown that ψ (x) implies ψ (S (x)). Now, ψ (∅) clearly holds. Then, using
TC-induction rule (Rule (3.15)19) we get that (TCx,y (x = S (y))) (x, ∅) implies ψ (x).

For the converse, denote by ϕ (x) the formula x = ∅ ∨ ∃y.y = ∅ ∧
(TCx,y (x = S (y))) (x, y). We prove this direction using the tHF -counterpart
of the restricted induction given in Prop. 5.5.4 (recall that ϕ (x) � ∅).
Clearly ϕ (∅) is provable. Now, assume ϕ (x) and we show ϕ (S (x)). First
notice that by Rule (3.13) we have (TCx,y (x = S (y))) (S (x) , x). In case
x = ∅, clearly ∃y.y = ∅ ∧ (TCx,y (x = S (y))) (S (∅) , y) is provable. In case
∃y.y = ∅ ∧ (TCx,y (x = S (y))) (x, y), using Rule 3.14 and standard first-order
rules, we get ϕ (S (x)). Thus, in any case we have proven ϕ (S (x)). Applying Prop.
5.5.4 we get that x ∈ tHF ∧Ord (x) implies ϕ (x).

From the above proposition it follows that all the results of the last section can
easily be derived in RSTAL using the TC definition of N. However, the use of AL
makes their proofs more direct and natural. Below we provide as an example the
definition of addition as a small �-function in RSTAL.

Example 5.5.8. Addition on N can be defined by the term:

+ : = λn ∈ Ñ, k ∈ Ñ.ιm. (k = 0 ∧ n = m) ∨
∃x, y.x = 〈∅, n〉 ∧ y=̌ 〈k,m〉 ∧ (TCx,y (y = 〈S (π1 (x)) , S (π2 (x))〉)) (x, y)

This above term is valid since (TCx,y (y = 〈S (π1 (x)) , S (π2 (x))〉)) (x, y) �AL {y},
x = 〈∅, n〉 �AL {x}, and y=̌ 〈k,m〉 �AL {m}.

Apparently, the full power of mathematical induction is not available in RST FOLC

(even in case HF ∈ C). In contrast, the fact that AL is the underling logic makes
the full induction on N available already in RSTAL (see Prop. 3.3.2).

19See Note 3.2.7 for the precise instance of the rule applied here.
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Formalizing Analysis in the Minimal
Frameworks

This chapter is devoted to the minimal systems among those described in the previous
chapter which meet the predicative principles. The minimal such first-order system is
RST FOL{HF}.

1 This system, in turn, has a minimal model: the universe J2 (in Jensen’s
constructible hierarchy [62]). J2 indeed seems to be the smallest universe that suffices
for predicative mathematics as conceived by Weyl, Poincaré, and Feferman.2 Beyond
the predicative philosophy behind it, working in such a minimal framework has several
advantages. J2 has the property that every element of it is definable by some closed
term (and we have reduction rules for such terms, like in the λ-calculus). This allows
for a concrete, computationally-oriented interpretation of the theory. What is more,
it makes the framework appropriate for mechanical manipulations and for interactive
theorem proving. However, the restriction to this minimal, concrete framework also
has of course its price. Not all standard mathematical structures are elements of J2
(the real line is a case in point). Hence, we have to treat such objects in a different
manner, i.e., as proper classes.

1Though RSTFOL is a subsystem of RSTFOL{HF}, RST
FOL
{HF} is the minimal system that allows the

introduction of the natural numbers as a complete set.
2The thesis that J2 is sufficient for core mathematics was already put forward in [114]. However,

both the motivation and the work itself were purely semantical there, and not connected to any
(formal) axiomatic system. Further comparison to this work is discussed in Note 6.1.5.
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We believe that this minimal predicative framework indeed suffices for scientifically
applicable mathematics. We substantiate this claim by developing in it fundamen-
tal portions of classical analysis in a predicatively acceptable way. Note that the
formalization presented in this chapter is based on classical logic. However, similar
formalization of constructive mathematics (see, e.g., [15, 83]) can be carried out in
the framework using intuitionistic logic.

Now, the minimal AL system is RSTAL, and its minimal model is Jωω . We show
that this system subsumes RST FOLHF , and offers a more congenial environment for
practicing standard mathematics since all standard mathematical structures can be
treated in it as sets.

The chapter is organized as follows: In Section 6.1 we investigate the minimal
first-order framework. First, its key properties are presented in Subsection 6.1.1.
Then, in Subsection 6.1.2, we turn to classical real analysis and demonstrate how
it can be developed in this minimal predicative framework, although the reals form
a proper class in it. This includes the introduction of the real line (Subsubsection
6.1.2.1), formulating and proving basic topological properties of it (Subsubsection
6.1.2.2), and formalization of fundamental properties of continuous real functions
(Subsubsection 6.1.2.3). In Subsection 6.1.3 we explore extensions of the minimal
first-order framework using constants. Then, in Section 6.2, we study the minimal
AL framework, and compare its power to that of the minimal first-order framework.

This chapter is mainly based on [10] (with some extensions and modifications).

6.1 The Minimal First-Order Framework

In this section we focus on the framework which is the minimal among the classical
first-order frameworks described in the previous chapter: the system RST cFOL{HF} .

Notation. For readability, in what follows we write RST cFOLHF instead of RST cFOL{HF} and
LHFRST instead of L{HF}RST .
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6.1.1 The Minimal Model

In addition to choosing the minimal formal language and system, we also restrict
ourselves in this section to the minimal model of RST cFOLHF .

Definition 6.1.1. Jensen’s constructible hierarchy [62] is defined as follows:.

J0 = ∅
Jα+1 = Rud (Jα)

Jλ =
⋃
α<λ

Jα if λ is a limit ordinal

where Rud (x) denotes the smallest set y such that x ⊆ y, x ∈ y, and y is closed
under application of all rudimentary functions.

Proposition 6.1.2. Let J1 and J2 be the first two universes in Jensen’s constructible
hierarchy. J2 with the interpretation of HF as J1 is a model of RST cFOLHF .

Proof. J2 is clearly a universe. Since J1 = HF , the claim follows from Prop. 5.3.9.

Theorem 6.1.3. X ∈ J2 iff there is a closed term t of LHFRST such that ‖t‖J2 = X.

Proof. Theorem 5.3.8 entails the right-to-left implication. The converse is proven by
induction. Clearly, ‖{◦ x | x ∈ x ◦}‖J2 = ∅ and ‖HF‖J2 = J1. Now, suppose that for
A,B ∈ J2 there are closed terms tA and tB such that ‖tA‖J2 = A and ‖tB‖J2 = B.
We show that there are closed terms for any of the results of applications of F0, ..., F8

to A and B.

• F0 (A,B) = ‖{◦tA, tB◦}‖J2

• F1 (A,B) = ‖tA − tB‖J2

• F2 (A,B) = ‖tA × tB‖J2

• F3 (A,B) = ‖{◦ x | ∃z ∈ tA∃u, v. 〈u, v〉 ∈̌tB ∧ x = 〈u, z, v〉 ◦}‖J2

• F4 (A,B) = ‖{◦ x | ∃z ∈ tA∃u, v. 〈u, v〉 ∈̌tB ∧ x = 〈z, v, u〉 ◦}‖J2

• F5 (A,B) = ‖{◦ Im ({◦w | w ∈ tA ∧ π1 (w) ∈ z ◦}) | z ∈ tB ◦}‖J2
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• F6 (A) = ‖{◦ x | ∃u ∈ tA.x ∈ u ◦}‖J2

• F7 (A) = ‖Dom (tA)‖J2

• F8 (A) = ‖{◦ x | ∃u ∈ tA∃v ∈ ta.u ∈ v ∧ x=̌ 〈u, v〉 ◦}‖J2

Corollary 6.1.4. Let X be a collection of elements in J2. X is a �-set iff there is a
closed term of LHFRST that defines it.

Proof. Follows immediately from the definition of �-set and Theorem 6.1.3.

It follows from this that proper �-classes are subsets of J2 which are not elements of
J2.

6.1.2 Real Analysis

Before we start we note that it is not difficult to formalize the definitions, propositions,
and proofs of this section in the formal system RST cFOLHF . These translations are
usually straightforward, but rather tedious. Therefore we shall usually omit them,
with the exception of a few outlined examples.

6.1.2.1 The Construction of the Real Line

The standard construction of Z, the set of integers, as the set of ordered pairs
(N× {0}) ∪ ({0} × N) can be straightforwardly carried out in RST cFOLHF , as can the
usual construction of Q, the set of rationals, in terms of ordered pairs of relatively
prime integers. There is also no difficulty in defining the standard orderings on Z and
Q as small �-relations, as well as the standard functions of addition and multiplica-
tion as small �-functions. It is easy to see that all the main properties of addition
and multiplication are provable in RST cFOLHF , as the standard proofs by induction can
be carried out within it. Furthermore, all the basic properties of Z and Q (such as Q
being a dense unbounded field) are straightforwardly proven in RST cFOLHF .

Now we turn to the standard construction of the real line using Dedekind cuts.
Since it is well known that the real line and its open segments (such as (0, 1)) are
not absolute, they cannot be �-sets, only proper �-classes. Thus the collection of
real numbers in RST cFOLHF will not be definable by a term but merely by a definable
predicate (see Subsection 5.4.2).



6.1. The Minimal First-Order Framework 95

Note 6.1.5. The idea of treating the collection of reals as a proper class is due to
[114] (see Footnote 2 on page 91). However, the fact that our formalization is carried
out within a formal system (as opposed to the work in [114]) has the benefit that
our framework is significantly simpler, even from the semantical point of view. For
instance, a semantic counterpart of our notion of a �-class has been used in [114],
and is called there an ι-class. It is defined there as a definable subset of J2 whose
intersection with any ι-set (i.e., an element of J2) is an ι-set. The last condition in
this definition seems somewhat ad hoc. More importantly, it is not clear how this
condition can be checked in general, and what kind of set theory is needed to establish
the claim that certain collections are ι-classes. The definition we use here of a �-class
is, in contrast, motivated by and based on purely syntactical considerations, and it is
a simplification of the notion of ι-class. Note that, by Prop. 5.4.5(2), every �-class
is an ι-class. It remains to be determined whether the converse holds as well.

Now define

ψ (u) := ∀x, y ∈ Q̃ (x ∈ u ∧ y < x→ y ∈ u)

ϕ (u) := ¬∃x ∈ u∀y ∈ u.x ≤ y

where x ≤ y stands for x < y∨x = y. The formula ψ (u) states that u contains every
rational number less than any rational number it contains, and ϕ (u) states that u
has no greatest element.

Definition 6.1.6 (The Reals). R is
∥∥∥{◦u ∈ PJ2 (Q) \ {∅,Q} |̂ψ (u) ∧ ϕ (u) ◦}

∥∥∥
Note that the term defining R in the above definition is a valid class term as

PJ2 (Q) \ {∅,Q} is a �class, and it is easy to verify that ϕ, ψ � ∅.
It is important to note that the �-class R is not the “real” real-line (if such a

thing really exists). However, it does contain all computable real numbers (such as√
2, π) . For example, to see that π is a member of R it suffices to know that π is the

interpretation of the term: {◦ r ∈ Q | ∃n ∈ N.r < 4 ·
n∑
k=0

(
1

4k+1
− 1

4k+3

)
◦} (a variant of

the Leibniz series).
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Notation 6.1.7. We use the following standard notations: Q+ = {q ∈ Q | 0 < q} and
R+ = {r ∈ R | 0 < r}.3 We also use the standard notations for intervals, i.e., for real
numbers a, b: (a, b) = {r ∈ R | a < r < b} and [a, b] = {r ∈ R | a ≤ r ≤ b}.

Proposition 6.1.8. The following holds:

1. The standard ordering <R on R is available in RST cFOLHF as a �-relation.

2. The standard addition and multiplication of reals are available in RST cFOLHF as
�-functions.

Proof.

1. The relation <R on R coincides with ⊂, thus we can define the relation <R by
{◦ 〈x, y〉 ∈ R× R |̂x ⊂ y◦}. We have that x ⊂ y � ∅, hence <R is a �-class. It
is straightforward to prove in RST cFOLHF basic properties concerning <, such as
it being a total order on R, the density of the rationals in R, the Archimedean
Principle, etc.

2. The �-function +R can be represented (using Lemma 5.4.16) by the term

+R = λx ∈ R̄, y ∈ R̄.{◦ z | ∃u ∈ x∃v ∈ y.z = u+ v ◦}

since ∃u ∈ x∃v ∈ y.z = u+ v � {z}.
To define multiplication, let F1 be the �-function:

F1 =
∥∥λa ∈ R̄+, b ∈ R̄+.{◦ z | ∃u ∈ a∃v ∈ b (0 ≤ u ∧ 0 ≤ v ∧ z = u · v) ◦}∪

{◦ x ∈ Q̃ | x < 0 ◦}
∥∥∥

Next, define the �-function − on R by

− =
∥∥∥λx ∈ R̄.{◦z |̂ ∃u ∈ Q̃\x∃a ∈ Q̃.z + b = a◦}

∥∥∥ .
Then, for 0 ≤ a ∧ b < 0 define F2 (〈a, b〉) := −F1 (〈a,−b〉), for a < 0 ∧ 0 ≤ b

define F3 (〈a, b〉) := −F1 (〈−a, b〉), and for a < 0 ∧ b < 0 define F4 (〈a, b〉) :=

3Notice that Q+ is a �-set and R+ is a �-class.
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F1 (〈−a,−b〉). Now the �-function ·R on R× R can be defined by

·R := F1 ∪ F2 ∪ F3 ∪ F4.

Proving in RST cFOLHF basic properties regarding these �-functions, such as R
being an ordered field, is again straightforward.

6.1.2.2 The Topology of the Reals

First we show that, as opposed to Weyl’s original approach to predicative analysis
[116], the least upper bound principle is provable in RST cFOLHF for �-subsets of R.

Theorem 6.1.9. It is provable in RST cFOLHF that every nonempty �-subset of R that
is bounded above has a least upper bound in R. Furthermore, the map (l.u.b) that
takes each nonempty �-subset of R that is bounded above to its least upper bound is
available in RST cFOLHF as a �-function.

Proof. Let X be a nonempty �-subset of R that is bounded above. ∪X is a �-
set (since ∪ is a rudimentary function), and since X is bounded above, standard
arguments show that ∪X is a Dedekind cut and thus belongs to R. Since the order
�-relation ≤ coincides with the inclusion relation, it follows that ∪X is a least upper
bound for X. Moreover, the function that maps each X to ∪X is a rudimentary
function (from PJ2 (R) to PJ2 (Q)), and hence it is a �-function. Denote it by F .
The desired function l.u.b is F �F−1[R] (recall that `RST cFOL

HF
R ⊆ PJ2 (Q)), which by

Proposition 5.4.18 is a �-function.

It should be emphasized that Theorem 6.1.9 only states that �-subsets of R have
the least upper bound property. Thus, it is insufficient for the development of most
of standard mathematics in RST cFOLHF . The reason is that in RST cFOLHF even the most
basic substructures of R, like the intervals, are not �-sets, but proper �-classes.
Hence we need a stronger version of the theorem which ensures that the least upper
bound property holds for standard �-subclasses of R. Such an extension is given in
Theorem 6.1.21 in the sequel, but to state it we need some additional definitions and
propositions.

First we consider �-classes U ⊆ R which are open. These �-classes are generally
not �-sets (unless they are empty), since they contain an interval of positive length,
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which is a proper �-class and thus cannot be contained in a �-set (see Prop. 5.4.5(3)).
Clearly, there is no such thing as a �-set of �-classes, since a proper �-class can never
be an element of another �-set or �-class. However, the use of coding (following [104]
and [114]4) allows us, for example, to replace the meaningless statement “the union
of a �-set of �-classes is a �-class” with the statement “given a �-set of codes for
�-classes, the union of the corresponding �-classes is a �-class”.

The coding technique we shall use is based on the idea behind the standard nota-
tion used in mathematics for a “family of sets”, (Ai)i∈I , where I is a set and Ai is a
set for each i ∈ I. In RST cFOLHF if Ai is a �-class for i ∈ I and I is a �-set we cannot
construct the collection of all such Ai’s. Thus, we shall treat the �-set I as a code
for the “family of classes” (Ai)i∈I . In fact, we mainly use the union of such a family,
i.e.,

⋃
i∈I Ai.

Definition 6.1.10. For every p ∈ R and q ∈ R+, the open ball Bq (p) is the �-class
{r ∈ R | |r − p| < q}.5

Next we define an open �-class as a union of a �-set of balls with rational centers
and rational radii.

Definition 6.1.11. Let U ⊆ R be a �-class.

• A �-set u ⊆ Q×Q+ is called a code for U if

U =
⋃

Bq (p)
〈p,q〉∈u

= {r ∈ R | ∃p, q (〈p, q〉 ∈ u ∧ |r − p| < q)}

• U ⊆ R is called open if it has a code.

In what follows, the formalizations in RST cFOLHF are carried out in the following way.
In order to quantify over open �-classes we use their codes and write Qu ⊆ Q̃×Q+

(Q ∈ {∀,∃}). If we wish to refer to the open �-class U whose code is u, we use the
following:

decode (u) := {◦r ∈ R̄ |̂ ∃p, q (〈p, q〉 ∈̌u ∧ |r − p| < q) ◦}

4In [114] such codings are called “proxies”.
5Note that an open ball in R is an open, finite interval (see Def. 6.1.23).
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To state that a class variable U denotes an open �-class we use:

Open (U ) := ∃u ⊆ Q̃×Q+.U = decode (u)

Proposition 6.1.12. The followings are provable in RST cFOLHF :

1. If u ⊆ R × R+ is a �-set, then U = {r ∈ R | ∃p, q (〈p, q〉 ∈ u ∧ |r − p| < q)} is
an open �-class.

2. The open ball Bq (p) = {r ∈ R | |r − p| < q} is an open �-class for any p ∈ R
and q ∈ R+.

Proof.

1. Define w =
∥∥∥{◦ 〈p, q〉 ∈ Q̃×Q+ | ∃r, s (〈r, s〉 ∈̌u ∧ q + |r − p| ≤ s) ◦}

∥∥∥. Since Q×
Q+ is a �-set and ∃r, s (〈r, s〉 ∈̌u ∧ q + |r − p| ≤ s) � ∅, w is a �-set that is a
code for an open �-class. It can easily be proven in RST cFOLHF that w codes
exactly the �-class U .

2. Take u = {〈p, q〉} (which is clearly a �-set) as the code of Bq (p) (by 1.).

Proposition 6.1.13. The followings are provable in RST cFOLHF :

1. The union of any �-set of open �-classes is an open �-class. i.e, given a �-set
of codes of open �-classes, the union of the corresponding open �-classes is an
open �-class.

2. An intersection of two open �-classes is an open �-class.

Proof.

1. Let X be a �-set of codes of open �-classes. Thus, ∪X is a code for the union
of the corresponding open �-classes.

2. If U and V are open �-classes, a code for their intersection is obtained by
intersecting every ball in a code for U with every ball in a code for V .
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Example 6.1.14. As an example of the use of the coding technique, we demonstrate
the formalization of Prop. 6.1.13(1) in LHFRST :

∀z
((
∀x ∈ z.x ⊆ Q̃×Q+

)
→

∃w ⊆ Q̃×Q+.decode (w) = {◦r |̂ ∃x ∈ z.r ∈ decode (x) ◦}
)

Definition 6.1.15. A �-class X ⊆ R is called closed if R−X is open.

Lemma 6.1.16. It is provable in RST cFOLHF that if U ⊆ R is an open �-class, then
for every x ∈ U there is an open ball about x which is contained in U .

Proof. If x ∈ U , then there is some 〈p, q〉 in the code of U such that x ∈ Bq (p). Take
ε = |p− x|. It is straightforward to see that Bε (x) ⊆ Bq (p) ⊆ U .

The proof of the next lemma is trivial.

Lemma 6.1.17. Let X ⊆ R be a �-class and A ⊆ X be a �-set. The followings are
equivalent in RST cFOLHF :

1. Every open ball about a point in X intersects A.

2. Every open �-class that intersects X also intersects A.

Example 6.1.18. To provide an example of a full formalization which uses class
variables, the formalization of the lemma above is:

ϕ := X ⊆ R̄ → ∀a ⊆X
(
∀x ∈X∀ε ∈ R̄+ (Bε (x) ∩ a 6= ∅)↔

∀u ⊆ Q̃×Q+ (decode (u) ∩X 6= ∅ → decode (u) ∩ a 6= ∅)
)

We next demonstrate how one can get a formula in the basic LHFRST (i.e., with no class
terms or variables) by replacing each appearance of a class term or variable with the
formula it stands for. First, we explain in detail the translation of x ∈ R̄ to LHFRST . One
iteration of the translation gives us x ∈ PJ2 (Q) \ {∅,Q} ∧ ϕ (x) ∧ ψ (x), where ϕ, ψ
are as in Def. 6.1.6. A second iteration results in x ⊆ Q̃∧x 6= Q̃∧x 6= ∅∧ϕ (x)∧ψ (x)

which is in LHFRST . Denote this formula by R (x). Now, for the full translation of ϕ,
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we first substitute {◦x |̂ψ◦} for X, where ψ � ∅. Then we proceed with the translation
to finally obtain the following formula (scheme) of LHFRST , for ψ � ∅:

∀b (ψ (b)→ R (b))→ ∀a ((∀z.z ∈ a→ ψ (z))→
[∀x (ψ (x)→ ∀ε ((R (ε) ∧ 0 < ε)→ ∃w. |w − x| < ε ∧ w ∈ a))↔

∀u ⊆ Q̃×Q+ ((∃w.R (w) ∧ ∃p, q (〈p, q〉 ∈̌u ∧ |w − p| < q) ∧ ψ (w))→
(∃w.R (w) ∧ ∃p, q (〈p, q〉 ∈̌u ∧ |w − p| < q) ∧ w ∈ a)])

Note 6.1.19. When we say that a theorem about a �-class or a �-function is provable
in RST cFOLHF (like in the previous lemma), we mean that it can be formalized and
proved as a scheme. This is to say that the proof can be carried out in RST cFOLHF

using a uniform scheme. The one exception is theorems concerning open �-classes,
which due to the coding machinery can be fully formalized and proved in RST cFOLHF .

Definition 6.1.20. Let X ⊆ R be a �-class, and A ⊆ X a �-set. A is called dense in
X if one of the two equivalent conditions of Lemma 6.1.17 holds. X is called separable
if it contains a dense �-subset.

Now we can turn to the proof that the least upper bound property holds not only
for nonempty �-subsets of R, but to any nonempty separable �-subclass of R.

Theorem 6.1.21. It is provable in RST cFOLHF that every nonempty separable �-
subclass of R that is bounded above has a least upper bound in R.

Proof. Let X be a nonempty separable �-subclass of R that is bounded above. Thus,
there is a �-subset A ⊆ X that is dense in X. Now, by Theorem 6.1.9, A has a least
upper bound, denote it by m. Suppose m is not an upper bound of X, i.e., there
exists x ∈ X −A such that x > m. Take εm = |x−m|. Then, there is no a ∈ A such
that a ∈ (x− εm, x+ εm), which contradicts the fact that A is dense in X. The fact
that m is the least upper bound of X is immediate.

Example 6.1.22. To demonstrate the formalization in LHFRST of the last theorem,
denote by separ (U) the formula ∃d.d ⊆ U ∧ ∀x ∈ U∀ε ∈ R+Bε (x)∩U 6= ∅, and by
boundU (w) the formula ∀x ∈ U .x ≤ w. Now, the full formalization is:(

U ⊆ R ∧U 6= ∅ ∧ separ (U) ∧ ∃w ∈ R̄.boundU (w)
)
→

∃v ∈ R̄
(
boundU (v) ∧ ∀w ∈ R̄ (boundU (w)→ v ≤ w)

)
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Definition 6.1.23. A �-class X ⊆ R is called an interval if for any a, b ∈ X such
that a < b: if c ∈ R ∧ a < c < b, then c ∈ X.

Proposition 6.1.24. It is provable in RST cFOLHF that any non-degenerate interval is
separable.

Proof. Let X be a non-degenerate interval. Take A to be X ∩Q. By Prop. 5.4.5(2),
A is a �-set. A standard argument shows that in every open ball about a point in X
there is a rational number, and thus it intersects A.

Corollary 6.1.25. It is provable in RST cFOLHF that any non-degenerate interval that
is bounded above has a least upper bound.

Proposition 6.1.26. It is provable in RST cFOLHF that an open �-subclass of a sepa-
rable �-class is separable.

Proof. Let X be an open �-subclass of the separable �-class S, and let D be the
dense �-subset in S. Let B be any open ball with center x ∈ X. By Lemma 6.1.16,
there is a ball B′ about x such that B′ ⊆ B ∩X. Since D is dense in S, B′ ∩D 6= ∅.
Hence, B ∩D ∩X 6= ∅, and so D ∩X is dense in X.

Definition 6.1.27. A �-class X ⊆ R is called connected if there are no open �-
classes U and V such that X ⊆ U ∪ V , U ∩ V 6= ∅, X ∩ U 6= ∅, and X ∩ V 6= ∅.

Example 6.1.28. The formalization of the above definition can be given by:

connected (X) := ¬∃u, v ⊆ Q̃×Q+ (X ⊆ decode (u) ∪ decode (v)∧
decode (u) ∩ decode (v) 6= ∅ ∧X ∩ decode (u) 6= ∅ ∧X ∩ decode (v) 6= ∅)

Proposition 6.1.29. Let X ⊆ R be a �-class. It is provable in RST cFOLHF that X is
connected if and only if it is an interval.

Proof. Assume that there are open�-classes U and V such thatX ⊆ U∪V , U∩V 6= ∅,
X ∩ U 6= ∅, and X ∩ V 6= ∅ (recall that the formalization of the existence of open
�-classes is done using their codes). Choose u ∈ U and v ∈ V and assume that
u < v. Let U0 = U ∩{z ∈ R | z < v} and V0 = V ∩{z ∈ R | z > u}. Prop. 6.1.13 and
Prop. 6.1.26 entail that U0 and V0 are open, separable �-subclass of R. Standard
arguments show that they are non-empty and bounded above. Thus, by Theorem



6.1. The Minimal First-Order Framework 103

6.1.21, U0 and V0 have least upper bounds. Following the standard proof found in
ordinary textbooks we can deduce that the least upper bounds are elements in [u, v],
but not elements of U0 or of V0, which is a contradiction, since [u, v] ⊆ U0 ∪ V0. The
classical proof of the converse direction can easily be carried out in RST cFOLHF .

6.1.2.3 Real Functions

Definition 6.1.30. Let X be a �-class. A �-sequence in X is a �-function on N
whose image is contained in X.

Note 6.1.31. Note that any �-sequence is a small �-function

Lemma 6.1.32. It is provable in RST cFOLHF that every Cauchy �-sequence in R con-
verges to a limit in R. The map (lim) that takes Cauchy �-sequences in R to their
limits is available in RST cFOLHF as a �-function.

Proof. Let a be a Cauchy �-sequence, and let ak abbreviate a (k). For each n ∈ N
define vn :=

⋂
k≥n ak. The l.u.b of λn.vn is equal to the limit of λn.an (see [59]). Thus,

limλn.an :=
⋃
{◦ vn | n ∈ Ñ ◦}.

Proposition 6.1.33. It is provable in RST cFOLHF that if X ⊆ R is closed, then every
Cauchy �-sequence in X converges to a limit in X.

Proof. Let a be a Cauchy �-sequence in X, and let ak abbreviate a (k). By Lemma
6.1.32, limλn.an is an element in R, denote it by l. Assume by contradiction that
l ∈ R − X. Since X is closed, R − X is open, and thus there exists ε > 0 such
that Bε (l) ⊆ R − X. This means that in Bε (l) there is no element from X. In
particular, for every ak, ak /∈ Bε (l) (i.e., |ak − l| ≥ ε), which contradicts the fact that
limλn.an = l.

Next we want to study sequences of functions on X whose images are contained
in Y , where X, Y are given �-classes. However, we cannot apply Definition 6.1.30 as
is, because a �-function which is not small cannot be a value of a �-function (and in
particular not a value of a �-sequence). Instead, we use the standard procedure of
Uncurrying.
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Definition 6.1.34. Let X and Y be �-classes. A �-sequence of �-functions on X
whose image is contained in Y is a �-function on N×X whose image is contained in
Y . (Intuitively, this �-function, call it F , denotes the sequence f (0) , f (1) , f (2) , ...

where f (n) = λx ∈ X.F (n, x)).

Proposition 6.1.35. Let X ⊆ R be a �-class. Any point-wise limit of a �-sequence
of �-functions on X whose image is contained in R is available in RST cFOLHF as a
�-function.

Proof. Let F be a �-sequence of �-functions on X whose image is contained in R.
Suppose that for each a ∈ X the �-sequence λn.F (n, a) is converging, and so it
is Cauchy. Define: Ga := {◦

〈
n, F̄ (n, a)

〉
| n ∈ Ñ ◦}. Then,

∥∥λa ∈ X̄.limGa

∥∥ is the
desired �-function.

Next we turn to continuous real �-functions. One possibility of doing so, adopted
e.g., in [116] and [104], is to introduce codes for continuous real �-functions (similar
to the use of codes for open �-classes). This is of course possible as such �-functions
are determined by their values on the �-set Q. However, we prefer to present here
another approach, which allows for almost direct translations of proofs in standard
analysis textbook into our system. This is done by using free function variables.
Accordingly, the theorems which follows are schemes (see Note 6.1.19).

Note 6.1.36. Implicitly, Chapter 5 can also be read and understood as done in the
manner described above. Therefore, in what follows we freely use results from it.

Definition 6.1.37. Let X ⊆ R be a �-class and let F be a �-function on X whose
image is contained in R. F is called a continuous real �-function if:

∀a ∈ X∀ε ∈ R+∃δ ∈ R+∀x ∈ X (|x− a| < δ → |F (x)− F (a)| < ε)

Proposition 6.1.38. Let X ⊆ R be a �-class and let F be a �-function on X whose
image is contained in R. It is provable in RST cFOLHF that if for every open �-class
B ⊆ R, there is an open �-class A such that F−1 [B] = A∩X, then F is continuous.

Proof. Let a ∈ X and ε > 0. Denote by V the open ball Bε (F (a)). Since V is an
open �-class, it follows from the assumption that there is an open �-class A such
that F−1 [V ] = A ∩ X (notice that F−1 [V ] is a �-class by Prop. 5.4.18(2)). Also,
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as F (a) ∈ V we have that a ∈ F−1 [V ] and thus a ∈ A. Since A is open, there
exists δa such that Bδa (a) ⊆ A. Take δ = δa. For any x ∈ X, if |x− a| < δa, then
x ∈ Bδa (a) ⊆ A. Hence x ∈ A ∩X = F−1 [V ], and therefore F (x) ∈ V = Bε (F (a)),
i.e., |F (x)− F (a)| < ε.

Lemma 6.1.39. The followings are provable in RST cFOLHF :

1. The composition, sum, and product of two continuous real �-functions is a
continuous real �-function.

2. The limit of a �-sequence of continuous real �-functions is a continuous real
�-function.

Proof. The standard proofs of these claims can be easily carried out in RST cFOLHF .
Note that they require the triangle inequality which is provable in RST cFOLHF .

Next we prove, as examples, the Intermediate Value Theorem and the Extreme
Value Theorem, which are two key properties of continuous real functions.

Theorem 6.1.40 (Intermediate Value Theorem). Let F be a continuous real �-
function on an interval [a, b], and suppose F (a) < F (b). It is provable in RST cFOLHF

that for any d ∈ R such that F (a) < d < F (b), there is c ∈ [a, b] such that F (c) = d.

Proof. Let d ∈ R and assume that F (a) < d < F (b). Define Qd to be∥∥∥{◦ x ∈ Q̃ | x ∈ [a, b] ∧ F (x) ≤ d ◦}
∥∥∥. Qd is clearly bounded, for instance by b. Since

F (a) < d , standard arguments that use the continuity of F and the denseness of Q
in R show that there is a rational a ≤ q such that F (q) ≤ d. Thus, Qd is non-empty.
Therefore, by Thm. 6.1.9, it has a least upper bound, denote it by c. Since Qd

is non-empty and b is an upper bound for it, c ∈ [a, b]. We prove that F (c) = d.
Assume by contradiction that F (c) < d. Pick ε = d − F (c). By the continuity of
F we know that there exists δ > 0 such that for any x ∈ [a, b], if |x− c| < δ, then
|F (x)− F (c)| < ε = d − F (c). This yields the existence of a rational q ∈ (c, c+ δ)

(again, by the denseness of Q in R) such that F (q) < d, which is a contradiction.
Now, assume by contradiction that F (c) > d, and pick ε = F (c)− d. In this case we
get that there exists δ > 0 such that for any x ∈ [a, b], if |x− c| < δ, then F (x) > d.
But then c− δ is also an upper bound for Qd, which is again a contradiction. Hence,
F (c) = d.
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Theorem 6.1.41 (Extreme Value Theorem). Let F be a continuous real �-function
on a non-degenerate interval [a, b]. It is provable in RST cFOLHF that F attains its
maximum and minimum.

Proof. Let Q be the �-set [a, b] ∩ Q. F [Q] is a �-set by Prop. 5.4.15, and it
is non-empty by the denseness of Q in R. We first show that F [Q] is bounded.
Assume by contradiction that it is not bounded, and define for every n ∈ N
Cn =

∥∥∥{◦ x ∈ Q̃ | F (x) > n ◦}
∥∥∥. By the assumption Cn is a non-empty, bounded �-

set. Therefore, by Thm. 6.1.9, each Cn has a least upper bound, denote it by cn. It is
easy to see that cn ∈ [a, b] for each n ∈ N. Now, define the �-sequence λn ∈ N.cn (this
is indeed a �-sequence since Thm. 6.1.9 also entails that the map l.u.b is available in
RST cFOLHF as a �-function). Standard arguments show that since [a, b] is closed and
bounded, there is a subsequence of λn ∈ N.cn, λk ∈ N.cnk

, which converges to a limit,
denote it by m. By Prop. 6.1.33 we have that m ∈ [a, b]. Now, since F is continuous,
by standard arguments we get that λk ∈ N.F (cnk

) converges to F (m). But, for
each k ∈ N: F (cnk

) > nk ≥ k, which contradicts the convergence of the sequence.
Hence, F [Q] is bounded, and again by Thm. 6.1.9 we get that it has a least upper
bound, denote it by d. Assume by contradiction that there exists u ∈ [a, b] such that
F (u) > d. Picking ε = F (u)− d, the continuity of F entails that there exists δ such
that for every x ∈ Bδ (u), F (x) ≥ d. But the denseness of Q entails that there is a
rational number q ∈ Bδ (u), and thus F (q) ≥ d, which is a contradiction. It remains
to show that there exists x ∈ [a, b] such that F (x) = d. This can be proven using
arguments similar to the ones used in the proof of Thm. 6.1.40 for the �-set Qd. The
proof that F attains its minimum is similar.

The next step is to introduce in RST cFOLHF the concepts of differentiation, integra-
tion, power series, etc, and develop their theories. It should now be clear that there
is no difficulty in doing so. Since a thorough exposition obviously could not fit in one
chapter, we omit the details here. However, we shall use some relevant facts regarding
these concepts in what follows.

We end this section by showing that all elementary functions that are relevant to
J2 are available in RST cFOLHF in the sense that they are formalizable as �-functions and
their basic properties are provable in RST cFOLHF . Of course, not all constant functions
on the “real” real line are available in J2, even though for every y in R, λx ∈ R.y is
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available in RST cFOLHF as a �-function. The reason is that λx ∈ R.y does not exists
in J2 for every “real” number y (for the simple fact that not every “real” real number
is available in RST cFOLHF ). Thus we next define what is an “J2-elementary function”
(see, for example, [95] for a standard definition of “elementary function”).

Definition 6.1.42. The collection of J2-elementary functions is the minimal collec-
tion that is closed under addition, substraction, multiplication, division, and compo-
sition, and includes the following:

• J2-constant functions: λx ∈ R.c where c is a real number in J2.

• Exponential: λx ∈ R.ex.

• Natural logarithm: λx ∈ R+.lnx.

• Trigonometric functions: λx ∈ R.sinx.

• Inverse trigonometric functions: λx ∈ [−1, 1] .arcsinx.

Proposition 6.1.43. All J2-polynomials (i.e., with coefficients in J2) on R are avail-
able in RST cFOLHF as �-functions, and it is provable in RST cFOLHF that they are con-
tinuous.

Proof. J2-constant functions and the identity function are available in RST cFOLHF by
Prop. 5.4.18, and the proofs of their continuity is immediate. Composition of �-
functions is also available in RST cFOLHF . All J2-polynomials on R are therefore available
in RST cFOLHF , since + and · are �-functions, and they are continuous by Lemma
6.1.39.

Proposition 6.1.44. The exponential and trigonometric functions are available in
RST cFOLHF , and it is provable in RST cFOLHF that they are continuous.

Proof. Since the exponential and the trigonometric functions all have power series,
their definability as �-functions follows from Prop. 6.1.35. It is straightforward
to verify that the basic properties of these �-functions are provable in RST cFOLHF .
Examples of such properties are: the monotonicity of the exponential, the power rules
of the exponential, trigonometric identities like sin (α + β) = sinα cos β + sin β cosα,
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the fact that sin has a period of 2π (where π is its first positive root), etc.6 The
continuity of these functions follows from Lemma 6.1.39 and Prop. 6.1.35.

Lemma 6.1.45. Let F be a continuous, monotone real �-function on a real interval
[a, b], and suppose F (a) < F (b). It is provable in RST cFOLHF that

∀y ∈ R̄
(
∃x ∈ [a, b].F̄ (x) = y ↔ y ∈ [F (a) , F (b)]

)
Proof. The left-to-right implication is immediate from the monotonicity of F . The
right-to-left implication follows from Thm. 6.1.40.

Proposition 6.1.46. Let F be a continuous, strictly monotone real �-function on
a real interval. Then it is provable in RST cFOLHF that the inverse function F−1 is
available in RST cFOLHF as a �-function, and its continuity is provable in RST cFOLHF .

Proof. We here prove the claim for continuous, strictly monotone real �-function
on a finite closed interval [a, b]. The extension from finite closed intervals to
arbitrary interval is standard. Suppose F is increasing. The proof is simi-
lar to the proof of Thm. 6.1.40. For any y ∈ [F (a) , F (b)] define the �-
set Qy :=

∥∥∥{◦ q ∈ Q̃ | q ∈ [a, b] ∧ F (q) ≤ y ◦}
∥∥∥. It is easy to see that Qy is non-

empty and bounded, thus, by Thm. 6.1.9, Qy has a least upper bound. Now,∥∥∥λy ∈ [F (a) , F (b)].l.u.bQ̃y

∥∥∥ is the desired inverse �-function. It is not difficult to
prove the basic properties of the inverse function in RST cFOLHF . We demonstrate the
proof that F−1 ◦ F = id[a,b]. For this we need to show that for any x ∈ [a, b],
l.u.bQF (x) = x. By the monotonicity of F , x is clearly an upper bound for QF (x). As-
sume by contradiction that there is a real number w < x which is an upper bound of
QF (x). Thus, in the interval (w, x) there is a rational number q such that F (q) ≤ F (x)

(by monotonicity). But then, q ∈ QF (x) and w < q, which is a contradiction.

Proposition 6.1.47. All J2-elementary functions are available in RST cFOLHF .

Proof. Props. 6.1.43 and 6.1.44 show that J2-polynomials on R, the exponential, and
the trigonometric functions are available in RST cFOLHF . Prop. 6.1.46 then enables the
availability in RST cFOLHF of the inverse trigonometric functions, and of the natural
logarithm as the inverse of the exponential.

6We can prove the standard properties of the exponent and the trigonometric functions as listed,
e.g., in [3], using the notion of differentiation.
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It is not difficult to see that many standard discontinuous functions are also avail-
able in RST cFOLHF , as the next proposition shows.

Proposition 6.1.48. Any piece-wise defined function with finitely many pieces such
that its restriction to any of the pieces is a J2-elementary function, is available in
RST cFOLHF .

Proof. If the function has finitely many pieces and each of the pieces is a J2-elementary
function, then it can be constructed in RST cFOLHF using Prop. 5.4.18(5).

6.1.3 Going Beyond the Minimal Framework

In this section we explore possible extensions of the minimal first-order framework
RST cFOLHF using constants. In particular, we add to the minimal framework constants
and appropriate closure axioms concerning them, in a way that incorporates the real
line as a �-set.

Terminology. In what follows we take C to be a set of constants that includes both
HF and U .

Definition 6.1.49. The system RST cFOLC is extended by adding to its definition
(Def. 5.2.6) the following clause:

• In case U ∈ C the following axioms are added:

– HF ∈ U .

– ∀x∀y (x ∈ U ∧ y ∈ x→ y ∈ U).

– ∀y1, ..., yn ∈ U.{◦ x | ϕ ◦} ∈ U , provided ϕ � {x}, Fv (ϕ) = {y1, ..., yn}, and
U does not occur in ϕ.7

Notes:

• The new constant symbol U is to be interpreted as an element of the uni-
verse W that includes HF and is a universe (and so it is closed under rudi-
mentary operations). This imposes some constraints on W , which now must

7To be more precise, for a concrete C we should specify which other constants may occur in ϕ
or not. HF is always allowed. As for the other constants in C, this will depend on their intended
interpretation. In this section we may assume that C = {HF,U}.
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contain as an element both HF and some universe. The minimal such W is
J3, in which we can take the interpretation of U to be J2. From a defini-
tional/computational/constructive point of view, a better choice for W might
be Jωω (which is the minimal model of RST cAL, see Section 6.2). In Jωω one
can use Jω as a sufficiently extensive interpretation of U .

• While for HF we have a unique interpretation, the interpretation of U is delib-
erately left open to allow stronger extensions of the system. The development
of applicable mathematics which is outlined below is independent of the inter-
pretation of U .

The real line is available as a �-set in RST cFOLC since it can be defined by the set
term {◦u ∈ U | D (u) ◦}, where D (u) is the formula stating that u is a Dedekind cut
(see Subsection 6.1.2). Next we show that any recursive function is available as a
�-function in RST cFOLC .

Proposition 6.1.50. Let F be a �-function which for ordered pairs in ‖U‖W returns
an element of ‖U‖W , and let A be an �-set in U . Then the function HF

A with domain
N which is defined by

HF
A (0) = A,

HF
A (S (n)) = F

(
A,HF

A (n)
)
,

is available as a �-function in RST cFOLC .

Proof. By a well-known theorem (see, e.g., Theorem 3.6 in [58]), the proof of which
can easily be reproduced in RST cFOLC , it suffices to show that given a unary function
F with the same property, there is a function HF

A with domain N such that

HF
A (0) = A,

HF
A (S (n)) = F

(
HF
A (n)

)
.

Let Seqfin (f) stand for the formula Func (f) ∧ ∃m ∈ N.Dom (f) = S (m), and take
FINF

A to be:

{◦ f ∈ U | Seqfin(f) ∧
〈

0, Ã
〉
∈ f ∧ ∀n < S (m)∀z (〈n, z〉 ∈̌f → 〈S (n) , F (z)〉 ∈ f) ◦}
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Next, define HF
A to be

⋃
FINF

A .

It is important to notice that although some of the mathematical structures used
in Section 6.1.2 are now �-sets (as opposed to �-classes in RST cFOLHF ), we still need to
work with �-classes in RST cFOLC . For example, the collection of all real �-functions
is not available as a �-set in RST cFOLC . However, we can treat this collection in
RST cFOLC as a proper �-class using the fact that the property of being a real �-
function is definable in our language by a formula which is safe with respect to ∅.
Another approach is to continue the method of introducing new constants for bigger
universes, from which we are going to take our real functions. This can still be done in
our framework if we take W to be Jωω , the interpretation of U as Jω, and handling n-
order constructs as elements of Jωn , after introducing the necessary constant symbols.
In practice, scientifically applicable mathematics uses at most 4-order constructs, so
we shall not need more than a finite number of constants.

6.2 The Minimal AL Framework

In the case of AL the minimal classical system in RST cAL. In [9] it was shown that its
minimal model is Jωω . This universe (like J2 in the case of LHFRST ) has the important
property that each element in it is definable by some closed term of LRST+TC . This
allows for a natural interpretation of cumulative type theory, in which Jω, Jω2 , Jω3 ,...
are taken as the major types (as they are all definable in RST cAL). These are the
types for which, in the case of RST cFOLHF , we had to enrich the system with new
constant symbols and corresponding axioms. Using RST cAL we get them “for free”.

Another element that was not available in RST cFOLHF whereas in RST cAL we get
it “for free“ is the treatment of the real line as a �-set. Thus, the reals can be taken
in RST cAL to be Dedekind cuts which are available in Jω, i.e., R can be defined as∥∥∥{◦u ∈ J̃ω | D (u) ◦}

∥∥∥Jωω

, where D (u) is the formula stating that u is a Dedekind cut.
Since D (u) � ∅, we get that R is available as a �-set in RST cAL. As before, R may
not be the “real” real line, but it contains much more than what was available in
RST cFOLHF , which as we have shown in the previous section, seems to be sufficient for
the development of mainstream mathematics. Moreover, as opposed to the situation
in RST cFOLHF , in RST cAL R itself is an ordinary object of ‘type’ Jω2 .
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It follows that in RST cAL the development of analysis can be done in a similar
way to the way it has been carried out in RST cFOLHF , with the (important) exception
that every standard mathematical structure is a �-set in RST cAL.8 This implies
that, in contrast to the work in RST cFOLHF , in RST cAL one does not have to work
with �-classes and codings. Moreover, since in RST cAL there is no need to use class
terms and class variables, all claims are now fully provable in RST cAL as theorems in
its language, not merely as schemes, as was the case in RST cFOLHF . For example, the
counterpart of Lemma 6.1.17 can be formulated in RST cAL in the following way:

∀x ⊆ R̃∀a ⊆ x
(
∀y ∈ x∀ε ∈ R̃+ (Bε (y) ∩ a 6= ∅)↔

∀u (open (u)→ (u ∩ x 6= ∅ → u ∩ a 6= ∅)))

where open (u) stands for ∀x ∈ u∃ε ∈ R̃+.Bε (x) ⊆ u (note that now the open ball
Bε (x) is a �-set). Thus, the formalization of analysis in RST cAL seems somewhat
more natural and compatible with ordinary mathematical practice.

As mentioned, in [9] it was shown that in RST cAL it possible to provide inductive
definitions of relations and functions which are sets, and in certain cases even to define
global relations. However, this is far from capturing the potential of predicative set
theory. Thus, for example, although ωn is definable in RST cAL for each n ∈ N, and
there is an effective procedure to derive a definition of ωn+1 from a a definition of ωn,
the set {ωn|n ∈ N} and the function λn ∈ N.ωn are not definable in LRST+TC , even
though their identity is clearly absolute and predicatively acceptable. One possible
way to remedy this is by extending the definability power of RST cAL. This can be
done by invoking the method of adding new constant symbols together with appropri-
ate closure axioms which was used on the first-order level (both for the introduction
of the natural numbers in Section 5.5.1, as well as for the extension of the minimal
framework in Subsection 6.1.3). In a similar manner, it is not difficult to show that
by adding to LRST+TC a constant denoting Jωω with appropriate closure axioms, we
get a system in which it is easy to construct closed terms for λn ∈ N.ωn and for ωω,
and prove their main properties.

8This is in contrast to the first-order case, in which even in the extended system described in
Subsection 6.1.3, some standard mathematical structures were still only available as proper �-classes.
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Note 6.2.1. Obviously the above extension process can be repeated using transfinite
recursion, creating a transfinite progression of languages and theories. To do so, we
need first of all to precisely define the process of passing from a theory Tα to Tα+1, and
of constructing Tα for limit α. Moreover, like in the systems for predicative analysis
of Feferman and Schütte (see [37, 100]), the progression should be autonomous, in the
sense that only ordinals justified in previous systems may be used. Now instead of
using indirect systems of (numerical) notations for ordinals, it would be much more
natural to use terms of our systems which provably denote in them von Neumann’s
ordinals. We conjecture that every ordinal less than Γ0, the Feferman-Schütte ordinal
for predicativity ([37, 38, 101]), should be obtainable in this way.





Chapter 7

Summary and Further Work

This thesis aimed at a formalization of applicable mathematics on the basis of a user-
friendly formal set theoretical framework which is amenable for mechanization and
reflects standard mathematical practice. We have identified what we believe are the
minimal ontological commitments the framework should employ. In term of the logic,
we have shown that ancestral logic offers a suitable base logic for the formalization
of mathematics, and created natural, effective proof systems for it. In the classical
case we have developed a Hankin-style semantics and proved that the system devel-
oped is complete with respect to it. For the constructive version of the system we
have developed a realizability semantics and proved that all provable formulas are
uniformly realizable. We have also explored some applications of the constructive
system for computer science by relating it to the concepts of Kleene algebras and
program schemes.We have then identified weak sets of set theoretical axioms which
are suitable for the predicative approach to mathematics, and based variants of our
formal system on them. A key property of these basic predicative theories is that they
are definitional, which allows for a very concrete, computationally-oriented interpre-
tation. We then demonstrated the usefulness of the framework for the formalization
of mathematics by developing in it large portions of classical analysis. We showed
that while the the minimal first-order variant of the framework is already sufficient
for the formalization of most of classical analysis, using the minimal framework which
is based on ancestral logic allows for a more natural development of classical analysis.

115
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The field of MKM is still at relatively early stages of its development, with new
lines of research, potential applications, promising extensions, and theoretical prob-
lems emerging all the time. We believe that both the formal framework for formalizing
mathematics used in this work as well as the use of ancestral logic have demonstrated
their usefulness and naturalness in this thesis. Evidently, there are various open ques-
tions and possible promising extensions. The main directions for further research
include the following:

Further Developing AL

Cut elimination theorem for ALG: The consistency of PAG was proven by pro-
viding a constructive method for transforming any proof of the empty sequent
into a cut-free proof (i.e., a proof in which there is no application of the cut
rule of LK). A crucial step in the proof is the elimination of all appearances
of PAG’s induction rule from the end-piece of the proof.1 In ALG the gener-
alization for the induction rule of PAG renders this method inapplicable. This
is because Gentzen’s elimination of the induction rule uses special features of
the natural numbers that do not exist in ALG. In the general case, the formula
ϕ in the induction rules of the systems for AL is an arbitrary formula. Thus,
unlike in PAG, we do not have a “built in” measure for the ϕ-distance between
two arbitrary closed terms s and t. The ϕ-path from s to t is not known apriori,
and it does not have to be unique. Therefore, an interesting task is to try to
prove some restricted form of cut-elimination theorem for ALG. One option is
to search for a suitable definition of the term “subformula” under which some
form of analytical cut elimination can be proven. It is clear that the usual
definition of a subformula should be revised.2 Thus the induction rule of AL
satisfies the subformula property only if we take a formula to be a subformula
of every substitution instance of it.

1The end-piece of a proof consists of all the sequents of the proof encountered if we ascend each
path starting from the end-sequent and stop when we arrive to an operational inference rule. Thus
the lower sequent of this inference rule belongs to the end-piece, but its upper sequents do not.

2Exactly as the straightforward notion of subformula used in propositional languages is changed
on the first-order level, where for example a formula of the form ψ{ tx} is considered to be a subformula
of ∀xψ, even though it might be much longer than the latter.
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Useful Fragments of AL: Determine and explore fragments of AL that are more
convenient to work with (e.g., they admit full cut-elimination), but are still suf-
ficient for at least some concrete applications. An example of such a fragment
may be the one which corresponds to the use of the deterministic transitive clo-
sure operator (see, e.g., [61]). Another option worth investigating is to restrict
the induction rule by allowing only ϕ’s of the form y = t, where Fv (t) = {x}.
Implicitly, this is e.g., the fragment of AL used in PAG.

Extending ALG: Natural as the systems for AL are, they are of course not complete.
Take for example cALG. It is not difficult to express its consistency in the
language {=, 0, S,+} as a logically valid sentence ConcALG

of cAL. By Gödel
theorem on consistency proofs, ConcALG

is not a theorem of cALG. It would be
interesting to find what valid principles of cAL (not available in cALG) can be
used to derive it, and whether those principles are valid for iAL as well.

The model theory of AL: In [102] it is noted that Craig interpolation theorem and
Beth definability theorem fail for logics in which the notion of finiteness can be
expressed. Thus, an interesting task is to find appropriate AL counterparts
(whenever such exist) to central model-theoretic properties of FOL or iFOL
such as these.

Uniform completeness for iALS: As noted, in [31] a new concept of uniform va-
lidity was introduced, and the system iFOLS was proven to be complete with
respect to it. An important research direction is to determine whether the
proof system iALS presented in Chapter 4 is uniformly complete with respect
to realizability semantics (and try to complete it in case it is not).

Applications of iALS: In Chapter 4 we established the connection between iALS
and Kleene Algebras with tests. It is interesting to investigate the connection
between iALS and new useful variations of KAT , such as: KAT +B! [50] and
Kleene Algebra with Equations [68] (which are mostly motivated by concrete
applications for verication), and Kleene algebras in software defined networks
[42]. iALS can also be used to develop efficient deployed algorithms from the
natural constructive proofs of theorems about data structures expressible in it.
It is also interesting to explore specific direct use of such proofs, e.g., in building
distributed protocols and making them attack-tolerant.
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Further Developing the Predicative Framework

Formalization of mathematics: In Chapter 6 we demonstrated how large portions
of classical analysis can be formalized within even the minimal system of our
predicative framework. Of course, a lot of further work of formalizing larger
portions of mathematics within our framework is still required in order to fully
substantiate the thesis that predicative mathematics is indeed sufficient for the
development of applicable mathematics. This includes first of all much more
analysis, but also topology and algebra. An important criterion for the adequacy
of our system for the task of formalizing mathematics is the extent to which
things will be done in a natural way.

Incorporating the Axiom of Choice: There are theorems of standard analysis
that require of course some form of the Axiom of Choice. Since in this work
we focused on the minimal possible framework for the development of classical
analysis, we have avoided any use of this axiom. However, in order to fully
recast analysis as presented in standard textbooks, the addition of some form
of the axiom of choice to the system is required. This can be achieved by ex-
tending the set of terms, using Hilbert’s ε function symbol, together with its
usual characterizing axiom: ∃xϕ → ϕ

{
εxϕ
x

}
(which is equivalent to the axiom

of global choice).

Going beyond predicativity: For philosophical as well as practical reasons this
work focused on a predicative setting for applicable mathematics. However, as
noted, the framework employed is not confined to the predicative approach and
can easily be extended. Thus, an interesting research task is to practice reverse
mathematics (see, e.g., [104]) to determine what set theoretical assumptions are
essential for various fragments of mathematics.

The dynamic approach: In this work we aimed at keeping all parts of the frame-
work static. Another interesting possibility is to replace the static approach to
terms with a dynamic approach, in which both being a legal term and equality
of terms are major judgments. The goal is that a user would be able to intro-
duce any term she/he finds natural and useful. For this we might like {x|ϕ}
to be a valid term whenever {x|ψ} is a valid term, and ϕ is logically equiva-
lent to ψ (according to the formal logical system which underlies the set theory



119

used). Note that in such a dynamic framework all parts of a theory (terms,
formulas, safety relation, logical principles, and non-logical axioms) are defined
by simultaneous recursion.

In addition, a major future research task is to implement and test the formal systems
developed in this work, and then use it for concrete applications. A particularly
important application we envisage is the development of user-friendly proof assistants.
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